

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Новгородский государственный университет имени Ярослава Мудрого» МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

медицинский колледж

Учебно-методическая документация

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ КАЧЕСТВА ПОДГОТОВКИ ОБУЧАЮЩИХСЯ

ОУД.03 МАТЕМАТИКА: АЛГЕБРА, НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ

Специальность:

34.02.01 Сестринское дело

Квалификация выпускника: медицинская сестра/медицинский брат

Разработчик:

В.Е. Рыбакова – преподаватель Медицинского колледжа Многопрофильного колледжа Новгородского государственного университета имени Ярослава Мудрого

Методические рекомендации по оценке качества подготовки обучающихся *ОУД.03 Математика: алгебра, начала математического анализа, геометрия* приняты на заседании предметной (цикловой) комиссии преподавателей общеобразовательных, общих гуманитарных и социально-экономических дисциплин колледжа

Протокол № 1 от « 03 » сентября 2015 г.

Председатель предметной (цикловой) комиссии

Содержание

1.	Пояснительная записка	4
2.	Материалы текущего контроля	7
3.	Промежуточная аттестация	23
4.	Информационное обеспечение обучения	25
5.	Приложение	26
6.	Лист регистрации изменений.	27

Пояснительная записка

Методические рекомендации по оценке качества подготовки обучающихся, являющиеся составной частью учебно-методического комплекса по дисциплине «Математика: алгебра, начала математического анализа, геометрия» составлены в соответствии с:

- 1. Федеральным государственным образовательным стандартом по специальности 34.02.01 Сестринское дело;
 - 2. Рабочей программой учебной дисциплины;
- 3. Примерной программой учебной дисциплины «Математика: алгебра и начала математического анализа; геометрия» (© ФГАУ «ФИРО», 2015 г.);
- 4. Положением об оценке качества освоения обучающимися основных образовательных программ среднего профессионального образования в колледжах НовГУ.

Методические рекомендации по оценке качества подготовки обучающихся охватывают весь объем содержания учебной дисциплины «Математика», включают в себя все виды планируемых аттестационных мероприятий с указанием формы проведения, перечня вопросов, критериев оценки.

Оценка качества подготовки обучающегося проводится с целью выявления уровня знаний, умений обучающегося.

Освоение учебной дисциплины «Математика» обеспечивает достижение обучающимися следующих результатов:

личностных:

- сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики;
- понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- готовность и способность к самостоятельной творческой и ответственной деятельности;

- готовность к коллективной работе, сотрудничеству со сверстниками в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

метапредметных:

- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения;
- целеустремленность в поисках и принятии решений, сообразительность и интуиция, развитость пространственных представлений; способность воспринимать красоту и гармонию мира;

предметных:

- сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;
- сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;
- владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;
- владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- владение навыками использования готовых компьютерных программ при решении задач.

Оценка качества подготовки обучающихся по данной дисциплине предусматривает следующие аттестационные мероприятия: текущий контроль успеваемости, промежуточную аттестацию.

Текущий контроль успеваемости проводится по темам, разделам рабочей программы дисциплины.

Промежуточная аттестация по дисциплине в соответствии с учебным планом проводится в форме экзамена письменного во II семестре.

Материалы текущего контроля

Тема 1. 2. Корни, степени и логарифмы

Вид контроля: текущий

Метод контроля: контрольная работа.

Устный счет по теме «Корень n-ой степени»

1. Найдите значения числовых выражений:

$$\sqrt{4 \cdot 49}, \sqrt{16 \cdot 9}, \sqrt{25 \cdot 81}, \sqrt{49 \cdot 25}, \\
\sqrt{36 \cdot 81}, \sqrt[3]{8 \cdot 27}, \sqrt[3]{27 \cdot 125}, \\
\sqrt{416 \cdot 81}, \sqrt{416 \cdot 256}, \sqrt{3} \cdot \sqrt{27}, \\
\sqrt{32} \cdot \sqrt{2}, \sqrt{72} \cdot \sqrt{2}, \sqrt{20} \cdot \sqrt{5}, \\
\sqrt[3]{2} \cdot \sqrt[3]{4}, \sqrt[3]{4} \cdot \sqrt[3]{16}, \sqrt[3]{100} \cdot \sqrt[3]{10}, \\
\sqrt[3]{25} \cdot \sqrt[3]{5}, \sqrt[5]{6^5 \cdot 3^5}, \sqrt[4]{72 \cdot 18}, \sqrt{27} \cdot \sqrt{12}$$

2. Найдите площадь прямоугольника, если его длина и ширина выражаются числами:

$$\sqrt{18}$$
 , $\sqrt{2}$, $\sqrt[3]{16}$, $\sqrt[3]{4}$, $2\sqrt{3}$, $3\sqrt{2}$, $2\sqrt{6}$

3. Сравните числа:

$$\sqrt{2} \sqrt[4]{2}$$
; $\sqrt{3} \sqrt[4]{81}$; $\sqrt{5} \sqrt[4]{24}$;

$$\sqrt{2}_{\mathsf{u}}\sqrt[3]{3}_{\mathsf{i}}$$
, $\sqrt{2}_{\mathsf{u}}\sqrt[5]{5}_{\mathsf{i}}$, $\sqrt[7]{6}_{\mathsf{u}}$

4. Определите знак выражения:

$$\sqrt[4]{7} - \sqrt[8]{50}$$
, $\sqrt[6]{24} - \sqrt[3]{5}$, $\sqrt[10]{10} - \sqrt[5]{3}$, $\sqrt[3]{5} - \sqrt[6]{26}$, $\sqrt{3} - \sqrt[8]{79}$

Контрольная работа по теме «Логарифмы»

Вариант 1

1. Решите уравнения:

$$\log_3(3x-8) = 5^{\log_5(2-x)}$$

$$6) \log_2(x-1) - 2 = \log_2(3x-7) - \log_2(x+1)$$

2. Решите неравенства:

a)
$$\lg(76-2x+3)-\lg 39>\lg 4-\lg 3$$

$$\log_{2x+1}(5-2x) > 1$$

3. Решите систему уравнения:

$$\begin{cases}
3x+y=8 & 12 \\
x^2+y^2-2xy=\log_2 144-\frac{1}{2}\log_2 81
\end{cases}$$

Контрольная работа по теме «Логарифмы»

Вариант 2

1. Решите уравнения:

a)
$$\log_2(9-2x)=10^{\lg(3-x)}$$

б)
$$\log \frac{1}{2} (x-3) + 1 = \log \frac{1}{2} (3x-7) - \log \frac{1}{2} (x+3)$$

2. Решите неравенства:

a)
$$\lg(53-x+2)-\lg63>\lg3-\lg7$$

$$\log_{10x+2}(10x+3)<1$$

3. Решите систему уравнения:

$$\begin{bmatrix}
x - y \\
2 & = \left(\frac{1}{4}\right)^{-\frac{3}{2}} \\
\log_2 x + \log_2 y = 2
\end{bmatrix}$$

Информационное обеспечение: [1] [2] [3] [5] [7] [8] [10].

Тема 1.3. Основы тригонометрии

Вид контроля: текущий

Метод контроля: контрольная работа (по вариантам)

Простейшие тригонометрические уравнения и неравенства

Вариант I

1. Решите уравнение

$$\cos 0.5x = -1.$$

a)
$$x = 3\pi + 4\pi n$$
, $\pi \in \mathbb{Z}$; B) $x = \pi + 2\pi n$, $\pi \in \mathbb{Z}$;

δ)
$$x = 2\pi + 4\pi n$$
, $\pi ∈ Z$; Γ) $x = \frac{2}{\pi} + \frac{\pi n}{2}$. $\pi ∈ Z$

2. Решите уравнение

$$\sin\left(4x-\frac{\pi}{3}\right)=\frac{1}{2}.$$

a)
$$x = (-1)^n \cdot \frac{\pi}{8} + \frac{\pi n}{4}$$
;

6)
$$x = (-1)^n \cdot \frac{\pi}{24} + \frac{\pi}{12} + \frac{\pi n}{4}, n \in \mathbb{Z};$$

B)
$$x = (-1)^n \cdot \frac{\pi}{6} + \frac{\pi n}{2}$$
;

r)
$$x = \frac{\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}.$$

3. Решите уравнение $\log 2x = -\sqrt{3}$ и найдите сумму его корней, принадлежащих промежутку $\left[-\frac{\pi}{2};\pi\right]$.

б)
$$\frac{5\pi}{3}$$
;

$$\Gamma$$
) $\frac{\pi}{3}$.

4. Решите уравнение $\sin x = \sin 3$.

a)
$$x = 3$$
;

6)
$$x = (-1)^n \cdot \arcsin(\pi - 3) + \pi n, n \in \mathbb{Z};$$

B)
$$x = (-1)^n \cdot (\pi - 3) + \pi n, n \in \mathbb{Z};$$

r)
$$x = 3 + 2\pi n, n \in \mathbb{Z}$$
.

5. Решите неравенство

$$\sin x < \frac{1}{2}.$$

a)
$$\left(-\infty; \frac{\pi}{6}\right);$$

6)
$$\left(\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right), n \in \mathbb{Z};$$

B)
$$(\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2\pi n), n \in \mathbb{Z};$$

r)
$$(\frac{5\pi}{6} + 2\pi n; \frac{13\pi}{6} + 2\pi n), n \in \mathbb{Z}.$$

6. Решите неравенство

$$\cos 2x > 0$$
.

a)
$$\left(\pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z};$$

6)
$$\left(-\frac{\pi}{4} + \pi n; \frac{\pi}{4} + \pi n\right), n \in \mathbb{Z};$$

B)
$$\left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbb{Z};$$

r)
$$\left(-\frac{\pi}{4}+2\pi n;\frac{\pi}{4}+2\pi n\right), n\in \mathbb{Z}.$$

7. Решите неравенство

$$\operatorname{tg}\left(2x-\frac{\pi}{3}\right)<\frac{\sqrt{3}}{3}.$$

a)
$$\left(-\frac{\pi}{12} + \frac{\pi}{2}n; \frac{\pi}{4} + \frac{\pi}{2}n\right), n \in \mathbb{Z};$$

6)
$$\left(-\frac{\pi}{6} + \frac{\pi}{2}n; \frac{\pi}{3} + \frac{\pi}{2}n\right), n \in \mathbb{Z};$$

B)
$$\left(-\frac{\pi}{6} + \pi n; \frac{\pi}{3} + \pi n\right), n \in \mathbb{Z};$$

r)
$$\left(-\infty; \frac{\pi}{3} + \frac{\pi}{2}n\right), n \in \mathbb{Z}.$$

Информационное обеспечение: [1] [2] [3] [5] [7] [8] [9] [10].

Тема 1.4. Функции их свойства, графики.

Вид контроля: текущий

Метод контроля: контрольная работа.

Свойства и графики тригонометрических функций

1. Найдите область значений функции

$$y=2-3\sin x.$$

a) [-1; 5]; 6) [-4; 2]; B) [-5; 1]; r) [-2; 4].

2. Найдите «нули» функции $y = \frac{1}{3}\cos 2x$ на промежут-

 $\ker\left[-\frac{\pi}{2}; 2\pi\right]$ и запишите их сумму.

a) $1,5\pi$; 6) 2π ; B) $3,75\pi$; r) $2,25\pi$.

3. Для функции $y = \sin\left(\frac{x}{2} - \frac{\pi}{6}\right)$ найдите точку минимума на промежутке $[0; 4\pi]$.

a) $\frac{7\pi}{2}$; 6) $\frac{7\pi}{6}$; B) $\frac{10\pi}{3}$; r) $\frac{5\pi}{2}$.

4. Найдите промежутки убывания для функции

$$y = \cos\left(\frac{\pi}{3} + \frac{2}{3}x\right).$$

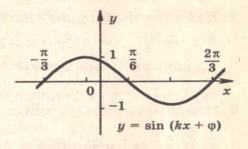
a)
$$\left[-\frac{\pi}{2} + \frac{2}{3}\pi n; \frac{\pi}{2} + \frac{2}{3}\pi n\right], n \in \mathbb{Z};$$

$$\mathsf{G})\left[-\frac{\pi}{2}+3\pi n;\,\pi+3\pi n\right],\,n\in\mathbf{Z};$$

$$\mathbf{B})\left[\frac{\pi}{2}+3\pi n;\,2\pi+3\pi n\right),\,n\in\mathbf{Z};$$

r)
$$\left(-\frac{\pi}{6} + \frac{2}{3}\pi n; \frac{2\pi}{3} + \frac{2}{3}\pi n\right), n \in \mathbb{Z}.$$

5. Расположите в порядке возрастания числа


- a) $\sin (-5)$, $\sin 1$, $\cos 1$; B) $\sin (-5)$, $\cos 1$, $\sin 1$;
- 6) $\sin 1$, $\sin (-5)$, $\cos 1$; r) $\cos 1$, $\sin 1$, $\sin (-5)$.
- 6. По графику некоторой функции запишите формулу, которой она задана.

a)
$$y = \sin\left(2x - \frac{\pi}{3}\right);$$

$$6) y = \sin\left(2x + \frac{2\pi}{3}\right);$$

$$\mathbf{B}) \ y = \sin\left(x + \frac{\pi}{3}\right);$$

$$\mathbf{r}) \ y = \sin \left(\frac{x}{2} - \frac{\pi}{3}\right).$$

7. Найдите значение выражения

$$\frac{\arcsin\left(-\frac{\sqrt{2}}{2}\right) - \arccos\left(-\frac{1}{2}\right)}{\operatorname{arctg}\frac{\sqrt{3}}{3}}.$$

- a) 3,5;
- 6) $-4,5\pi$; B) -5,5;
- 8. Вычислите $\cos (\arcsin (-0.6))$.
 - a) -0.36;
- б) 0,6; в) -0,8; г) 0,8.
- 9. Найдите arcsin x, если arccos $x = \frac{\pi}{5}$.
 - a) $\frac{9\pi}{5}$;
- б) 0,3 π ; в) 0,8 π ; г) $-\frac{\pi}{5}$.
- 10. Найдите сумму координат точки пересечения графиков функций

$$y = \arccos x$$
 и $y = \frac{\pi}{2} + x$.

- a) $\frac{\pi}{2}$;
- 6) 1; B) $\frac{\pi}{2} + 1$; r) $\pi + 1$.

Критерии оценки:

Число правильных	0-2	3-4	5-7	8-10
ответов				
Оценка в баллах	2	3	4	5

Информационное обеспечение: [1] [2] [3] [5] [7] [8] [9] [13].

Тема 2.1. Начала математического анализа

Вид контроля: текущий

Метод контроля: контрольная работа (по уровню сложности).

Уровень А:

Вариант №1	Вариант №2		
1. Найдите прои	зводную функции:		
1) $y = x^4$; 2) $y = 4$; 3) $y = -\frac{3}{x}$;	1) $y = x^7$; 2) $y = 5$; 3) $y = -\frac{6}{x}$; 4) $y = 4x + 5$; 5) $y = \sin x + 0.5\sqrt{x}$.		
4) $y = 3x + 2$; 5) $y = 2\cos x - 4\sqrt{x}$.	4) $y = 4x + 5$; 5) $y = \sin x + 0, 5\sqrt{x}$.		
2. Найдите угол, который образует	с положительным лучом оси абсцисс		
касательная к граф	ику функции в точке:		
10 /	$y = \frac{x^8}{8} - \frac{x^5}{5} - x\sqrt{3} - 3$, $x_0 = 1$.		
3. Прямолинейное движение точки	3. Прямолинейное движение точки		
ОПИСЫВАЕТСЯ ЗАКОНОМ $s = t^4 - 2t^2$.	описывается законом $s = t^6 - 4t^4$. Найдите		
Найдите ее скорость в момент	ее скорость в момент времени $t = 2$ с.		
времени $t=3$ С.			
4. Дана функция $y = x^3 - 3x^2 + 4$.	4. Дана функция $y = 0.5x^4 - 4x^2$. Найдите:		
Найдите: промежутки возрастания и	промежутки возрастания и убывания		
убывания функции; точки	функции; точки экстремума;		
экстремума; наибольшее и	наибольшее и наименьшее значения		
наименьшее значения функции на	функции на отрезке [-1;3].		
отрезке [-1;4].			

Уровень *В*:

Вариант №1	Вариант №2				
1. Найдите производную функции:					
1) $y = x \cdot \sin x$; 2) $y = \frac{ctgx}{x}$;	1) $y = x \cdot \cos x$; 2) $y = \frac{tgx}{x}$; 3) $y = (3x-4)^6$; 4) $y = x \cdot ctgx$.				
3) $y = (2x-3)^8$; 4) $y = x \cdot tgx$.	3) $y = (3x-4)^6$; 4) $y = x \cdot ctgx$.				
2. Вычислите $f'\left(\frac{\pi}{6}\right)$, если					
1) $f(x) = 1.5x^2 - \frac{\pi x}{2} + 5 - 4\cos x$;	1) $f(x) = x^2 - \frac{\pi x}{3} + 5 + 2\cos x$;				
3. Постройте	график функции				
$y = x^3 - 3x^2 + 4$ $y = 0.5x^4 - 4x^2$					
4. Составьте уравнение касательной к графику функции в точке					
$y = 4\sqrt{x} , x_0 = 4$	$y = \frac{6}{x}$, $x_0 = 3$				

Уровень*С*:

Вариант №1	Вариант №2				
1. Найдите все значения x , при которых выполняется неравенство					
$f'(x) < 0$, если $f(x) = 81x - 3x^3$	$f'(x) \ge 0$, если $f(x) = 7,5x^2 - x^3$				

2. Найдите все значения x , при которых выполняется равенство $f'(x) = 0$, если							
$f(x) = \cos 2x - x\sqrt{3} \text{ M } x \in [0; 4\pi].$	$f(x) = \sin 2x + x \text{if } x \in [0; 4\pi].$						
3. Площадь прямоугольного участка 144 м ² . При каких размерах участка длина окружающего его забора будет наименьшей?	2 0						
4. Постройте график функции							
1) $y = \frac{x^2 - 4}{x^2 + 4}$; 2) $y = \frac{4x}{x^2 + 1}$. 1) $y = \frac{x^2 - 1}{x^2 + 1}$; 2) $y = \frac{8x}{x^2 + 4}$.							

Информационное обеспечение: [1] [2] [3] [5] [7] [8] [9] [10] [12] [13].

Тема 3.1. Элементы теории вероятностей

Вид контроля: текущий

Метод контроля: устный опрос.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Сформулируйте классическое определение вероятности.
- 2. Сформулируйте формулы для вычисления числа размещений, перестановок, сочетаний.
- 3. Сформулируйте классическое и статистическое определение вероятности.
- 4. Сформулируйте теоремы сложения и умножения вероятностей.
- 5. Сформулируйте формулу полной вероятности.
- 6. Сформулируйте формулу Бернулли.
- 7. Сформулируйте понятие дискретной случайной величины и законы ее распределения.
- 8. Как оценить по относительной частоте события его вероятность, и наоборот?
- 9. Как подсчитать вероятность события, пользуясь классическим определением вероятности и используя простейшие комбинаторные схемы?
- 10. Как вычислить вероятности суммы несовместных событий, произведения несовместных событий, произведения независимых событий?

Информационное обеспечение: [1] [2] [3] [5] [7] [8] [9] [10] [12] [13].

Тема 4.1. Прямые и плоскости в пространстве

Вид контроля: текущий

Метод контроля: контрольная работа.

«Параллельность прямых и плоскостей в пространстве»

- 1. Отрезок РК не имеет общих точек с плоскостью α . Через его концы проведены параллельные прямые, которые пересекают плоскость α в точках P_1 и K_1 . Точка B середина отрезка PK.
- 1) Постройте точку В₁ пересечения плоскости α и прямой, которая проходит через точку В и параллельна прямой КК₁;
- 2) Вычислите длину отрезка BB₁, если $PP_1 = 5$ см, $KK_1 = 17$ см.
- 2. Отрезок BC, равный 13 см, лежит в плоскости α . Точка M не лежит в ней. Точки P и Q- середины отрезков BM и CM.
- 1) Может ли прямая РО иметь общие точки с плоскостью α ? (Ответ поясните.)
- 2) Вычислите расстояние между точками Р и Q.
- 3. Через точку M, расположенную между параллельными плоскостями α и β , проведены две прямые, которые пересекают плоскости в точках B и B₁, C и C₁.
- 1) Как расположены прямые ВС и В1С1? (Ответ поясните.)
- 2) Вычислите длину отрезка B_1C_1 , если BC = 14см, $CM : MC_1 = 2 : 3$.
- 4. Дан куб ABCDA₁B₁C₁D₁. Точка Р лежит на ребре AA₁. Постройте:
- 1) точку пересечения прямой В1Р с плоскостью (ВСD);
- 2) точку пересечения прямой D₁P с плоскостью (BCD);
- 3) прямую, по которой пересекаются плоскости (ВСD) и (В1РD1).

Информационное обеспечение: [1] [2] [3] [4] [5] [6] [13] [14].

Тема 4.2. Многогранники

Вид контроля: текущий

Метод контроля: контрольная работа (по вариантам).

«Многогранники»

1 Вариант

- 1. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является параллелограмм ABCD со сторонами 6 см и 12 см и углом 60°. Диагональ B_1D призмы образует с плоскостью основания угол в 30°. Найдите площадь полной поверхности призмы.
- 2. Сторона основания правильной треугольной пирамиды равна 3 см, а угол между боковой гранью и основанием равен 45°. Найдите площадь полной поверхности пирамиды.
- 3. Сторона основания правильной треугольной пирамиды равна a, а боковая грань наклонена к плоскости основания под углом α . Найдите площадь полной поверхности пирамиды.

2 Вариант

- 1. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является параллелограмм ABCD со сторонами 4 см и $4\sqrt{3}$ см и углом 30° . Диагональ AC_1 призмы образует с плоскостью основания угол в 60° . Найдите площадь полной поверхности призмы.
- 2. Высота основания правильной треугольной пирамиды равна 3 см, а угол между боковой гранью и основанием пирамиды равен 45°. Найдите площадь полной поверхности пирамиды.
- 3. Основание пирамиды квадрат со стороной *а*. Одна из боковых граней перпендикулярна основанию, а две смежные с ней грани составляют с плоскостью основания угол α. Найдите площадь полной поверхности пирамиды.

Информационное обеспечение: [1] [2] [3] [4] [5] [6] [13] [14].

Тема 4.3. Тела и поверхности вращения

Вид контроля: текущий

Метод контроля: контрольная работа (по вариантам).

І вариант

№1 (*10 баллов*). В цилиндр вписан шар, в который вписан равносторонний конус. Найдите отношение площадей поверхностей конуса и цилиндра.

№2 (*9 баллов*). От шара отсекли сегмент, площадь сферической поверхности которого в k раз меньше площади сферы. Какую часть составляет объём соответствующего ему шарового сектора от объёма шара?

№3 (*9 баллов*). В пирамиду помещён полушар, основание которого лежит на основании пирамиды, а сферическая поверхность касается всех боковых граней пирамиды. Найдите площадь полной поверхности полушара, если объём пирамиды равен V, а площадь её боковой поверхности равна S.

№4 (*12 баллов*). В трапеции ABCD: (BC)||(AD), $(CD)\bot(AD)$, $\angle BAD = 60^\circ$, |AB| = |BC| = a. Трапеция вращается вокруг прямой m, параллельной (CD) и находящейся от неё на расстоянии $\frac{1}{2}a$. Найдите объём и площадь поверхности тела вращения, если прямая m не пересекает оснований трапеции.

№5. Докажите, что отношение объемов шара и описанного около него усеченного конуса равно отношению площадей их полных поверхностей.

Критерии оценки:

((5)) – 38 - 40 баллов; ((4)) – 30 - 37 баллов; ((3)) – 22 - 29 баллов.

II вариант

- **№1** (*10 баллов*). В равносторонний конус вписан шар, в который вписан равносторонний цилиндр. Найдите отношение площадей поверхностей цилиндра и конуса.
- **№2** (*9 баллов*). От шара отсекли шаровой сегмент так, что объем соответствующего ему шарового сектора в n раз меньше объема шара. Какую часть от площади сферы составляет площадь сферической поверхности этого сегмента?
- **№3** (*9 баллов*). В прямую призму помещён полушар, основание которого вписано в одно из оснований призмы, а сферическая поверхность касается другого основания. Найдите площадь полной поверхности полушара, если объём призмы равен V, а площадь боковой поверхности призмы в два раза больше площади ее основания и равна S.
- **№4** (*12 баллов*). В трапеции ABCD: |AB| = |CD|, (BC)||(AD), $\angle BAD = 45^{\circ}$, высота равна меньшему основанию и имеет длину b. Трапеция вращается вокруг прямой m, проходящей через точку D и перпендикулярной основаниям трапеции. Найдите объём и площадь поверхности тела вращения.
- №5. Докажите, что отношение объемов шара и описанного около него усеченного конуса равно отношению площадей их полных поверхностей.

Критерии оценки:

((5)) – 38 - 40 баллов; ((4)) – 30 - 37 баллов; ((3)) – 22 - 29 баллов.

Информационное обеспечение: [1] [2] [3] [4] [5] [6][13] [14].

Текущий контроль

по теме Теория вероятностей

Семестр I

Вариант 1

- 1. Событие называется достоверным,
- 1) если вероятность его близка к единице;
- 2) если при заданном комплексе факторов оно может произойти;
- 3) если при заданном комплексе факторов оно обязательно произойдет;
- 4) если вероятность события не зависит от причин, условий, испытаний.
- 2. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
- 1) 0,75 2) 0,25 3)0,2 4)0,5
- 3. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает
 - 1) 0,005 2) 0,001 3) 0,995 4) 0,02
- 4. На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьевкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.

1)0,3 2)0,75 3)1 4)3/7

Вариант 2

- 1. Классическое определение вероятности события А состоит в том, что вероятность события А есть
- 1) отношение общего числа исходов к числу исходов, благоприятствующих событию А;
- 2) отношение числа благоприятствующих этому событию исходов, которые могут быть совместны и равновозможны, к общему числу всех возможных исходов;
- 3) отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных элементарных исходов, образующих полную группу событий.
- 2. В среднем из 1400 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

1)0,995 2)1/7 3) 0,14 4)1/1400

- 3. Фабрика выпускает сумки. В среднем на 200 качественных сумок приходится четыре сумки со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. 1)0,02 2)0,4 3)0,98 4) 1/200
- 4. Конкурс исполнителей проводится в 3 дня. Всего заявлено 50 выступлений по одному от каждой страны. В первый день 34 выступления, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьевкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?

 1) 0,06 2) 0,02 3) 0,68 4)0,16

Информационное обеспечение: [1] [2] [3] [4] [5] [6] [7] [8].

Текущий контроль по теме Многогранники

1 Вариант

- 1. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является параллелограмм ABCD со сторонами 6 см и $6\sqrt{3}$ см и углом 150°. Диагональ B_1D призмы образует с плоскостью основания угол в 60°. Найдите площадь полной поверхности призмы.
- 2. Сторона правильной треугольной пирамиды равна 4 см, а угол между боковым ребром и основанием равен 60°. Найдите площадь полной поверхности пирамиды.
- 3. Высота правильной четырехугольной пирамиды равна H, а боковое ребро составляет с основанием угол α . Найдите площадь полной поверхности пирамиды.

2 Вариант

- 1. Основанием прямой призмы $ABCDA_{I}B_{I}C_{I}D_{I}$ является параллелограмм ABCD со сторонами 3 см и 6 см и углом 120°. Диагональ AC_{I} призмы образует с плоскостью основания угол в 30°. Найдите площадь полной поверхности призмы.
- 2. Высота основания правильной треугольной пирамиды равна 4 см, а угол между боковым ребром и основанием пирамиды равен 30°. Найдите площадь полной поверхности пирамиды.
- 3. Основание прямоугольного параллелепипеда квадрат. Угол между диагоналями смежных граней, исходящих из одной вершины, равен α . Диагональ параллелепипеда равна d. Найдите площадь полной поверхности параллелепипеда.

Информационное обеспечение: [1] [2] [3] [4] [5] [6][13] [14].

Текущий контроль

по теме «Координаты в пространстве».

1 вариант

При выполнении заданий А1-А3 укажите букву с верным ответом.

- **А 1.**Точка Е- середина отрезка AB. Найдите координаты точки B, если A(14;-8;5), E(3;-2;-7).
- a) B(-8;4;-19);
- б) В(8;-4;-19);
- в) B(8;-4;-19);
- г) B(8;4;19).
- **А 2.** Дана точка М (2;-3;-4).Найдите точку симметричную ей, относительно начала координат.
- a) M_1 (-2;3;4);
- б) M_1 (2;3;4);
- B) M_1 (-2;-3;4);
- Γ) M_1 (-2;-3;4).
- **А 3.** Расстояние от точки B(-2;-5; $\sqrt{3}$) до оси ОХ равно:
- a) $4\sqrt{3}$;
- б) $7\sqrt{2}$;
- B) $3\sqrt{2}$;
- Γ) $2\sqrt{7}$.

При выполнении задания В достаточно указать ответ.

Найдите сумму координат вершины Д параллелограмма АВСД, если А (2;3;2), В (0;2;4), С (4;1;0).

При выполнении задания С необходимо представить полное решение задачи.

С. В треугольнике ABC B(0;0;0),A(1;2;1),C(1;-1;1). Найдите диаметр окружности, описанной около него.

<u>2 вариант</u>

При выполнении заданий А1-А3 укажите букву с верным ответом.

- **А 1.**Точка К- середина отрезка АВ. Найдите координаты точки A, если B(0;0;2), K(-12;4;15).
- a) A(-24;8;28);
- б) A(24;-8;-28);
- в) А(-24;-8;-28);
- г) А(24;8;28).

- **А 2.** Дана точка М (2;-3;-4).Найдите точку симметричную ей, относительно плоскости (XOY).
- a) M_1 (-2;-3;-4);
- 6) M_1 (-2;3;4);
- B) M_1 (2;-3;4);
- Γ) M_1 (-2;-3;4).

А 3.Найдите расстояние от точки B(-2;5; $\sqrt{3}$) до оси OZ:

- a) $\sqrt{31}$;
- б) 5;
- B) $\sqrt{29}$;
- г) 4,8.

При выполнении заданий части В достаточно указать ответ. **R**

Найдите произведение координат вершины Д параллелограмма ABCД, если A (4;2;-1), B (1;-3;2), C (-4;2;1).

При выполнении задания С необходимо представить полное решение задачи.

С. В треугольнике MFP M(0;0;0), F(2;-1;3), P(-1;1;1). Найдите диаметр окружности, описанной около него.

Проверь себя: ответы.

1 вариант

ЗАДАНИЯ	A 1	A 2	A3	В	C
Ответы	a	a	Γ	6	3
Баллы	1	1	1	2	3

2 вариант

ЗАДАНИЯ	A 1	A 2	A3	В	C
Ответы	a	В	В	14	$\sqrt{17}$
Баллы	1	1	1	2	3

Информационное обеспечение: [1] [2] [3] [4] [5][6] [14], интернет-ресурсы.

Промежуточная аттестация

Семестр II

Форма промежуточной аттестации: экзамен письменный

Перечень вопросов для подготовки к письменному экзамену по дисциплине «Математика»

- 1. Степень с рациональными показателями.
- 2. Свойства логарифмов.
- 3. Показательные и логарифмические уравнения и неравенства.
- 4. Значение тригонометрических функций. Тождественные преобразования.
- 5. Тригонометрические уравнения и неравенства.
- 6. Тригонометрические функции.
- 7. Степенная функция.
- 8. Показательная функция.
- 9. Логарифмическая функция.
- 10. Производная. Вычисление производного.
- 11. Геометрический и физический смысл производной.
- 12. Исследование функций с помощью производной.
- 13. Производная и ее применение.
- 14. Произведение показательной функции.
- 15. Производная логарифмической функции.
- 16. Понятие о первообразной.
- 17. Вычисление первообразных.
- 18. Интеграл и его применение.
- 19. Первообразования и интеграл.
- 20. Решение практических задач с применением вероятностных методов.
- 21. Метод координат в пространстве.
- 22. Координаты точки и координаты вектора.
- 23.Скамерное произведение вектора.
- 24. Движения.
- 25. Цилиндр. Площадь поверхности цилиндра.
- 26. Конус. Площадь поверхности конуса. Усеченный конус.
- 27.Сфера и шар. Уравнение сферы. Касательная плоскость к сфере. Площадь сферы.
- 28.Объем прямоугольного параллелепипета, прямой призмы и цилиндра.
- 29. Объем наклонной призмы. Объем пирамиды и конуса.
- 30.Объем и поверхность шара, его частей.

Критерии оценивания.

Оценка «5» ставится, если

• студент грамотно с точки зрения математики показал высокий уровень усвоения изученного материала.

Оценка «4» ставится, если

• студент грамотно показал высокий уровень усвоения изученного материала, но при этом допустил ошибки в определении.

Оценка «3» ставится, если

• студент не точно раскрыл вопрос, показав средний уровень усвоения учебного материала

Оценка «2» ставиться, если

• студент не представил правильное решение данного вопроса.

Информационное обеспечение обучения

Основная литература

- 1. Атанасян Л.С. Геометрия: учеб. для 10-11 кл. для общеобразоват. учреждений /Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев и др. 19-е изд. М.: Просвещение, 2010.-255c.
- 2. Григорьев С.Г. Математика: учебник для студ. сред. проф. обр.- 6-е изд., перераб. и доп.- М.: Академия, 2011.-416с.
- 3. Колмогоров А.Н. Алгебра и начала математического анализа. 10-11 классы.- 20-е изд.- М.: Просвещение, 2011.- 384с.

Дополнительная литература:

- 4. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия (базовый и профильный уровни). 10—11 кл. 2005.
- 5. Алимов Ш.А. Алгебра и начала анализа: учеб для 10-11 кл. для общеобразоват. Учреждений /Ш.А.Алимов, Ю.М.Колягин Ю.В.Сидоров и др. 14-е изд. М.: Просвещение, 2006. 384 с.
- 6. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия (базовый и профильный уровни). $10-11.-M.,\ 2005.$
- 7. Богомолов Н.В. Практические занятия по математике: учеб. для студ. сред. проф. учеб. заведений / Н.В.Богомолов. 5-е изд., стер. М.: Высш.шк., 2006. 495 с.
- 8. Виленкин Н.Я. Алгебра и математический анализ. 10 кл.: учеб. пособие для шк. и кл. с углуб. изуч. Математики/ Н.Я.Виленкин, О.С. Ивашевич-Мусатов, С.И.Шварцбурд 10-е изд, стер. М.: Мнемозина, 2006. 335с.
- 9. Колмогоров А.Н. Алгебра и начала анализа: учеб для 10-11 кл. для общеобразоват. Учреждений /А.Н.Колмогоров, А.М.Абрамов, Ю.П. Дудницын и др. -13-е изд. М.: Просвещение, 2006. -384 с. -30 экз.
- 10. Колягин Ю.М., Ткачева М.В, Федерова Н.Е. и др. под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл. М., 2005.
- 11. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра и начала математического анализа (базовый и профильный уровни). 11 кл. М., 2006.
- 12. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл. М., 2006.
- 13. Стойлова Л.П. Математика: учеб. для студ высш. Пед. Учеб. заведений. М.ИЦ «Академия», 2006. 424 с.
- 14. Шарыгин И.Ф. Геометрия (базовый уровень) 10—11 кл. – 2005.

Интернет-ресурсы:

www.slovari.yandex.ru www.wikiboks.org revolution.allbest.ru

Приложение 1

Ответы по теме 1.3. Свойства тригонометрии

- 1. Б
- 2. Б
- 3. B
- 4. B
- **5.** Γ
- 6. Б
- 7. A

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Номер	Номер листа			в Всего ФИО и подг			Дата	Дата введения
изме-	измененного	замененного	нового	олоткаєм	листов в	ответственного за внесение	внесения	изменения
нения					документе	изменения	изменения	