Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Новгородский государственный университет имени Ярослава Мудрого»

Старорусский политехнический колледж (филиал)

УТВЕРЖДАЮ:
Директоріколибджа

КО Димім. А. Алексеева/

окторіколибджа

кортимані

2017 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине ОП.08 ТЕОРИЯ АЛГОРИТМОВ

09.02.03 Программирование в компьютерных системах Квалификация техник-программист

 Фонд оценочных средств по учебной дисциплине разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования (далее — ФГОС СПО) по специальности 09.02.03 Программирование в компьютерных системах (приказ Министерства образования и науки РФ от 28 июля 2014 года №804) и в соответствии с учебным планом по специальности 09.02.03 Программирование в компьютерных системах

Организация: Старорусский политехнический колледж (филиал) НовГУ им. Ярослава Мудрого

Разработчик: Васильев Александр Дмитриевич, Старорусский политехнический колледж (филиал) НовГУ, преподаватель информационных дисциплин первой квалификационной категории

Председатель предметной (цикловой) комиссии

1ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Теория Алгоритмов

09.02.03 Программирование в компьютерных системах

Наименование раздела, темы	Коды контролируемы х компетенций	Результаты обучения (освоенные умения, усвоенные знания)	Наименование контрольно-оценочного средства	
			Текущий контроль	Промежуточная аттестация
1	2	3	4	5
РАЗДЕЛ 1 Теория				Перечень
алгоритмов				вопросов и
Тема 1.1 Теория	ОК 1-9,	уметь:	Фронтальный опрос	практических
рекурсивных функций	ПК 1.1,	– выполнять действия	Проверочная работа	заданий к
	ПК 1.2	над функциями	1 Примитивные функции	дифференциро
		знать:	Проверочная работа	ванному зачету
		рекурсивные функции	2 Примитивные функции	за
			Тестовые задания	

Тема 1.2 Уточнение	OK 1-9,	уметь:	Фронтальный опрос	2 семестр
понятия алгоритма через	ПК 1.1,	 Строить программы 	Проверочная работа	
абстрактную	ПК 1.2	знать:	3 Машина тьюринга	
математическую машину		– Машину Тьюринга	Тестовые задания	
Тьюнринга				
Тема 1.3 Уточнение	OK 1-9,	уметь:	Фронтальный опрос	
понятия алгоритма через	ПК 1.1,	 Составлять алгоритмы 	Проверочная работа	
машину с	ПК 1.2	знать:	4 Алгоритмы МНР	
неограниченными		– МНР - функции	Тестовые задания	
регистрами				
Тема 1.4 Марковские	ОК 1-9,	знать:	Фронтальный опрос	
подстановки	ПК 1.1,	– Марковские	Проверочная работа	
	ПК 1.2	подстановки	5 Марковские	
			подстановки	
			Тестовые задания	

2 СОСТАВ КОС ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ, УМЕНИЙ ОБУЧАЮЩИХСЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ/ РАЗДЕЛАМ И ТЕМАМ

Раздел 1 Теория алгоритмов

Тема 1.1 Теория рекурсивных функций

Докажите, что следующие функции являются примитивно рекурсивны:

- 1) f(x) = x + 4;
- 2) f(x) = x + n;
- 3) f(x) = 2x + 1;
- 4) f(x, y) = 2x + 3y;
- 5) f(x, y) = kx + ny;
- 6) $f(x) = 2^x$;
- 7) $f(x, y) = x^y$;
- 8) $f(x) = x^x$;
- 9) $f(x, y) = (x + y)^{xy}$;
- 10) $f(x, y) = (kx + y)^{nxy}; k, n \in N$
- 11) $f(x) = 3^{x+1}$;
- 12) $f(x) = x^2 + 3x + 2$.

Напишите примитивно рекурсивное описание функций:

- 1) f(x) = x + 7;
- 2) f(x) = 5x + 19;
- 3) f(x, y) = 5 x + 3 y;
- 4) $f(x, y)=5 \cdot sg(x)+x \cdot y;$
- 5) f(x, y) = 2x y;
- 6) f(x), удовлетворяющей условию:

$$f(x,0)=x;$$

$$f(x, y + 1) = f(x, y) - 1.$$

Какая функция получается из функции g(x) и h(x, y, z) с помощью операции примитивной рекурсии:

- 1) g(x) = x; $h(x, y, z) = z^x$.
- 2) g(x) = x; $h(x, y, z) = x^z$.
- 3) g(x) = 1; $h(x, y, z) = z \cdot (x + 1)$.
- 4) g(x)=x; $h(x, y, z)=x \cdot y + f(x,0)$.
- 5) g(x,y)= x y; $h(x,y,z,t)= 2 \cdot (x + y) \cdot f(x,y,z)$.

Тема 1.2 Уточнение понятия алгоритма через абстрактную математическую машину Тьюнринга

Постройте программы машин Тьюринга вычисляющие следующие функции:

1.
$$f(x) = x + 3$$
;

$$2. \qquad f(x) = 4 \bullet x \; ;$$

3.
$$f(x) = 2 - x$$
;

4.
$$f(x) = 5 - x$$
;

5.
$$f(x) = x - 3;$$

6.
$$f(x) = x - 3$$
;

7.
$$f(x) = k \cdot x - 3$$
;

8.
$$f(x) = 2 \cdot x + 3$$
.

Используя базис элементарных машин и машины M_1 , M_2 , M_3 , вычисляющие соответственно функции $f(x) = 2 \cdot x$; f(x,y) = x + y;

f(x, y) = x - y, с помощью операций композиции, ветвления и зацикливания постройте машины, вычисляющие функции:

1.
$$f(x,y)=x\cdot y$$
;

2.
$$f(x,y)=2\cdot(x-y)$$
;

3.
$$f(x,y) = 2 \cdot x + y$$
;

4.
$$f(x,y) = \left[\frac{x}{y}\right]$$
 ;

5.
$$rest(x, y) = \begin{cases} \text{остаток от деления } x \text{ на } y, \text{ если } y > 0 \\ 0, \text{ если } y = 0 \end{cases}$$

6.
$$f(x) = 2 \cdot x + 5$$
;

7.
$$f(x) = x - 13$$
;

8.
$$f(x, y) = 2(x + y) \div (x \div y)$$
;

9.
$$f(x,y)$$
, удовлетворяющей условию:
$$\begin{cases} f(x,0) = 2 \cdot x \\ f(x,y+1) = x - f(x,y) \end{cases}$$
;

10.
$$f(x) = \mu y [(x + y) \div 5 = 0]$$
.

Из машин, составляющих базис элементарных машин, путем операций композиции, ветвления, зацикливания постройте машины, правильно вычисляющие следующие функции:

1.
$$f(x) = x + 5$$
;

$$2. \qquad f(x) = 3 \cdot x + 5;$$

3.
$$f(x) = x \div 1;$$

1.
$$Sgx = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \end{cases}$$
;

$$2. \qquad \overline{Sg}x = \begin{cases} 0, & x > 0 \\ 1, & x = 0 \end{cases};$$

3.
$$f(x) = C_5^1(x)$$
;

4.
$$f(x,y)=I_2^2(x,y)+1$$
;

5.
$$f(x, y, z) = I_2^3(x, y, z) \div 1$$
;

6.
$$f(x,y) = \max(x,y) = \begin{cases} x, & x > y \\ y, & x \le y \end{cases};$$

7.
$$f(x) = x!$$

Тема 1.3 Уточнение понятия алгоритма через машину с неограниченными регистрами

Составьте алгоритмы МНР- вычисляющие функции:

1.
$$f(x) = x + 5$$
;

$$2. \qquad f(x) = 3 \cdot x + 5;$$

3.
$$f(x) = x \div 1;$$

4.
$$Sgx = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \end{cases}$$
;

5.
$$\overline{Sg}x = \begin{cases} 0, & x > 0 \\ 1, & x = 0 \end{cases}$$
;

6.
$$f(x) = C_5^1(x)$$
;

7.
$$f(x, y) = I_2^2(x, y) + 1$$
;

8.
$$f(x, y, z) = I_2^3(x, y, z) \div 1$$
;

9.
$$f(x,y) = \max(x,y) = \begin{cases} x, & x > y \\ y, & x \le y \end{cases}$$

10.
$$f(x) = x!$$

Докажите разрешимость следующих предикатов на множестве натуральных чисел:

```
1. p(x, y) = (x \neq y);
```

- 2. $p(x, y) = (x \neq y)$; 3. p(x, y) = (x < y);
- 1. p(x) = (x четное число);
- 2. p(x, y) = (3x + 2y = 0).

ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ

Семестр 2

Форма промежуточной аттестации дифференцированный зачет

Перечень вопросов:

- 1. Перечислите основные элементарные функции и их свойства.
- 2. Что такое операция подстановки и какими свойствами она обладает?
- 3. Охарактеризуйте операцию примитивной рекурсии и ее возможные случае?
- 4. Какие производные операции вы знайте?
- 5. Что такое примитивно рекурсивная функция и какими свойствами она обладает?
- 6. Приведите пример примитивно рекурсивной функции относительно заданной совокупности функций?
- 7. Приведите пример применения операции конечного суммирования и конечного произведения над функциями?
- 8. Что такое предикат, какими свойствами он обладает?
- 9. Показать, что логические операции над предикатами сохраняют свойство примитивной рекурсивности?
- 10. Что такое представляющая функция предиката?
- 11. Доказать, что операции навешивания кванторов существования и общности над предикатами сохраняют свойство примитивной рекурсивности?
- 12. Приведите пример о кусочно заданной функции относительно совокупности функций и предикатов, обладающих свойством примитивной рекурсивности?
- 13. Доказать, что операция ограниченной минимизации сохраняет свойство примитивной рекурсивности функций?

- 14. Что такое ЧРФ и какими свойствами она обладает?
- 15. Каково отличие между ПРФ и ЧРФ. Приведите примеры, выражающие их отличительные черты?
- 16.Охарактеризуйте машину Тьюринга. В чем отличие свойств МТ от реальной вычислительной машины.
- 17. Какие операции существуют для машины Тьюринга?
- 18.Покажите на примере реализацию операций композиции и ветвления с помощью машины Тьюринга.
- 19. Какими свойствами обладает операция композиции?
- 20. Что такое конфигурации машины Тьюринга и какие виды конфигураций существуют?
- 21. Какие элементарные машины Тьюринга существуют?
- 22.Охарактеризуйте каждую элементарную машину.
- 23.Постройте копирующую машину m K с помощью остальных элементарных машин.
- 24.Постройте выбирающую машину Tm с помощью остальных элементарных машин.
- 25. Определите правильную вычислимость функции по Тьюрингу.
- 26.Докажите, что каждая элементарная функция правильно вычислима по Тьюрингу.
- 27. Докажите, что операции подстановки, примитивной рекурсии и минимизации сохраняют свойство правильной вычислимости функции по Тьюрингу.
- 28. Докажите, что всякая ПРФ, всякая ЧРФ правильно вычислима по Тьюрингу.
- 29. Объясните эквивалентность двух уточнений алгоритма.
- 30.Чем отличаются уточнения понятия алгоритма в виде рекурсивной функции от машины Тьюринга?

КРИТЕРИИ ОЦЕНКИ

Оценка 5 «отлично» выставляется студенту при полном раскрытии теоретических вопросов, выполнении практического задания, свободном владении терминами.

Оценка 4 «хорошо» выставляется студенту при частичном раскрытии содержания одного из теоретических вопросов или не полном выполнении практического задания, понимании и владении понятийным аппаратом.

Оценка 3 «удовлетворительно» выставляется студенту при частичном раскрытии обоих теоретических вопросов, не полном выполнении практического задания, слабом владении понятийным аппаратом учебной дисциплины.

Оценка 2 « неудовлетворительно» выставляется студенту при не выполнении практического задания и в случае отсутствия ответа на вопросы экзаменационного билета.

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ОБУЧЕНИЯ

Основная литература:

1 Игошин, В.И. Теория алгоритмов : учеб. пособие для студ. учреждений сред. проф. образования / В. И. Игошин . - М. : Академия, 2013. - 316 с.