Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт информационных и электронных систем

Кафедра прикладной математики и информатики

Методы МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Учебный модуль по направлению подготовки 11.03.04 —электроника и наноэлектроника

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Принято на заседании			Разработ	гал
Ученого совета ИЭИС	До	Доцент кафедры ПМИ		
Протокол № <u>41</u> от <u>25.05</u> 2017	- Map	_	О.Н.Баро	OB
г.	« 61 »	03	2017	Γ.
Директор института				
СЭмин С.И. Эминов	Принято на заседан			
	HPOTOKOT NO 4 0	TOID	32017	Γ.

Паспорт фонда оценочных средств

по учебному модулю (дисциплине) «Методы математической физики» для направления подготовки 11.03.04—электроника и наноэлектроника

№	Модуль, раздел	Контролируемые	ФОС	
п/п	(в соответствии с РП)	Компетенции	Вид оценочного	Количество
		(или их части)	средства	Вариантов
				заданий
1	Приведение линейных уравнений второго	ПК-1	Индивидуальное	10
	порядка к каноническому виду, задача		домашнее зада-	
	Коши для уравнений гиперболического		ние(ИДЗ 1)	
	типа.			
2	Метод Фурье решения смешанных за-	ПК-1	Контрольная	10
	дач для уравнений гиперболического ти-		Работа (КР)	
	па.			
3	Уравнения параболического и эллип-	ПК-1	Индивидуальное	10
	тического типа.		домашнее задание	
			(ИДЗ 2)	

Характеристика оценочного средства № 1

Индивидуальное домашнее задание (ИДЗ 1)

Общие сведения об оценочном средстве

Индивидуальное домашнее заданиеявляется одним из средств текущего контроля в освоении учебнойдисциплины «Методы математической физики».

ИДЗ используется для проверки и оценивания знаний, умений и навыков студентов после завершения изучения раздела 1 и содержит 5 заданий.

ИДЗ выполняется в письменном виде во время внеаудиторной самостоятельной работы в течение 1–2 недель. В это время преподаватель проводит консультации по темам ИДЗ и осуществляет текущий контроль выполнения ИДЗ. Количество вариантов соответствует количеству студентов в группе. Максимальное количество баллов, которые может получить студент, равно 50 баллам. Итоговая аттестация — зачёт осуществляется в конце учебного семестра суммированием баллов студента по всем трём оценочным средствам (ИДЗ 1, КР, ИДЗ 2)

Параметры оценки выполнения ИДЗ 1

Критерии оценки ИДЗ: полнота и правильность решения каждого задания.

Условия оценки индивидуального домашнего задания	
Предел длительности	2 недели
контроля знаний	

Предлагаемо количество	
задач	5
Критерии оценки:	
«удовлетворительно»	25 – 37 баллов – испытывает трудности при выполнении зада-
	ний, самостоятельно решены 2 – 3 примера
«хорошо»	38 –45 баллов – допускает неточности при выполнении заданий,
	самостоятельно решены 3 – 4 примера
«отлично»	46 – 50 баллов – демонстрирует четкое и безошибочное выпол-
	нение заданий, выполнены 4 – 5 заданий

Характеристика оценочного средства № 2

Контрольная работа (КР)

Общие сведения об оценочном средстве

Контрольная работа является одним из средств текущего контроля в освоении учебнойдисциплины «Методы математической физики». Контрольная работа используется для проверки и оценивания знаний, умений и навыков студентов после завершения изучения раздела 2 УМ. Контрольная работа проводится в письменном виде во время аудиторной самостоятельной работы на 9 неделе. Количество вариантов соответствует количеству студентов в группе. Контрольная работа охватывает весь теоретический и практический материал второго раздела модуля. Максимальное количество баллов, которые может получить студент, равно 50 баллам.В случае неудовлетворительной сдачи контрольной работы студенту разрешается ее переписать до итоговой аттестации.

Параметры оценки выполнения КР

Предел длительности контроля знаний	2 акад. часа
Предлагаемое количе-	
ство задач	4
Критерии оценки:	
«удовлетворительно»	25 – 37 баллов – решено правильно только 2 задания
«хорошо»	38 – 45 баллов – решено правильно 3 задания
«отлично»	46 – 50 баллов – решено 4 задания, возможно с небольшими не-
	точностями

Характеристика оценочного средства № 3

Индивидуальное домашнее задание (ИДЗ 2)

Общие сведения об оценочном средстве

Индивидуальное домашнее задание является одним из средств текущего контроля в освоении учебной дисциплины «Методы математической физики».

ИДЗ используется для проверки и оценивания знаний, умений и навыков студентов после завершения изучения раздела 3 и содержит 5 заданий.

ИДЗ выполняется в письменном виде во время внеаудиторной самостоятельной работы в течение 1–2 недель. В это время преподаватель проводит консультации по темам ИДЗ и осуществляет текущий контроль выполнения ИДЗ. Количество вариантов соответствует количеству студентов в группе. Максимальное количество баллов, которые может получить студент, равно 50 баллам.

Параметры оценки выполнения ИДЗ 2 Критерии оценки ИДЗ: полнота и правильность решения каждого задания.

Условия оценки индивидуального домашнего задания		
Предел длительности	2 недели	
контроля знаний		
Предлагаемо количество		
задач	5	
Критерии оценки:		
«удовлетворительно»	25 – 37 баллов – испытывает трудности при выполнении зада-	
	ний, самостоятельно решены 2 – 3 примера	
«хорошо»	38 – 45 баллов – допускает неточности при выполнении заданий,	
	самостоятельно решены 3 – 4 примера	
«отлично»	46 – 50 баллов – демонстрирует четкое и безошибочное выпол-	
	нение заданий, выполнены 4 – 5 заданий	

Варианты заданий для ИДЗ 1 в соответствии с паспортом ФОС

Вариант 1

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{xy} + u_{xz} + u_{yz} - u_y + u_x = 0.$$

2. Привести к каноническому виду уравнение

$$u_{XX} + 5u_{XV} + 4u_{VV} = 0.$$

3.Привести к каноническому виду уравнение

$$yu_{XX} + u_{yy} = 0.$$

4. Решить задачу Коши для уравнения колебаний бесконечной струны, используя формулу Даламбера

$$\begin{cases} u_{tt} = u_{xx} + e^{-t}, & -\infty < x < \infty, \quad t > 0 \\ u(x,0) = \sin x, \quad u_t(x,0) = \cos x, & -\infty < x < \infty \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < +\infty, & t > 0 \\ u(x,0) = x^3, & u_t(x,0) = \cos x, \\ u(0,t) = 0, & t > 0. \end{cases}$$

Вариант 2

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XX} + u_{XY} + u_{XZ} + u_{YZ} + u_{X} = 0.$$

2. Привести к каноническому виду уравнение

$$u_{\mathcal{X}} + 2u_{\mathcal{X}\mathcal{Y}} - 4u_{\mathcal{Y}\mathcal{Y}} = 0.$$

3. Привести к каноническому виду уравнение

$$u_{XX} + yu_{YY} = 0.$$

4. Решить задачу Коши для уравнения колебаний бесконечной струны, используя формулу Даламбера

$$\begin{cases} u_{tt} = u_{xx} + e^{-t}, & -\infty < x < \infty, \quad t > 0 \\ u(x,0) = x, & u_t(x,0) = \cos x, & -\infty < x < \infty \end{cases}.$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = x^3, & u_t(x,0) = \sqrt{x}, \\ u(0,t) = 0, & t > 0. \end{cases}$$

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XX} - 4u_{XV} + 2u_{XZ} + 4u_{VV} + u_{ZZ} + 3u_X = 0.$$

2. Привести к каноническому виду уравнение

$$u_{XX} + 2u_{XY} - 4u_{YY} = 0.$$

3. Привести к каноническому виду уравнение

$$xu_{\chi\chi} + yu_{\chi\chi} + 2u_{\chi} = 0.$$

4. Решить задачу Коши для уравнения колебаний бесконечной струны, используя формулу Даламбера

$$\begin{cases} u_{tt} = u_{xx} + t, & -\infty < x < \infty, \quad t > 0 \\ u(x,0) = x, \quad u_t(x,0) = \cos^2 x, & -\infty < x < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = x^2, & u_t(x,0) = \sqrt{x}, \\ u_x(0,t) = 0, & t > 0. \end{cases}$$

Вариант 4

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XX} - 2u_{XY} + 3u_{YY} - 2u_{XZ} - 2u_{YZ} + 3u_{ZZ} = 0.$$

2. Привести к каноническому виду уравнение

$$u_{\chi\chi} + 2u_{\chi\chi} + u_{\chi\chi} + u_{\chi} = 0.$$

3. Привести к каноническому виду уравнение

$$y^2 u_{xx} + 2xy u_{xy} + x^2 u_{yy} = 0.$$

4. Решить задачу Коши, используя формулу Пуассона

$$\begin{cases} u_{tt} = a^{2}(u_{xx} + u_{yy}), & -\infty < x, y < \infty, \quad t > 0, \\ u|_{t=0} = 3x^{2} + 2y^{2}, & u_{t}|_{t=0} = 0, & -\infty < x, y < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = \sqrt{x}, & u_t(x,0) = x, \\ u_x(0,t) = 0, & t > 0. \end{cases}$$

Вариант 5

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XX} - 2u_{XV} - 2u_{YZ} + 4u = 0.$$

2. Привести к каноническому виду уравнение

$$u_{xx} - (1 + y^2)^2 u_{yy} - 2y(1 + y^2)u_y = 0.$$

3. Привести к каноническому виду уравнение

$$u_{XX} + 4u_{XY} + 10u_{YY} - 24u_X = 0.$$

4. Решить задачу Коши, используя формулу Пуассона

$$\begin{cases} u_{t} = a^{2}(u_{xx} + u_{yy}), & -\infty < x, y < \infty, \quad t > 0, \\ u|_{t=0} = x^{2} + y^{2}, & u_{t}|_{t=0} = x, \quad -\infty < x, y < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx} + x^2 t, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = \sqrt{x}, & u_t(x,0) = 1, \\ u_x(0,t) = 0, & t > 0. \end{cases}$$

Вариант 6

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XX} - 2u_{XY} + u_{ZZ} - 2u_{YZ} + 4u = 0.$$

2. Привести к каноническому виду уравнение

$$e^{2x}u_{xx} + 2e^{x+y}u_{xy} + e^{2y}u_{yy} - xu = 0.$$

3. Привести к каноническому виду уравнение

$$u_{xx}+2u_{xy}-4u_{xz}+u_{yy}=0.$$

4. Решить задачу Коши, используя формулу Пуассона

$$\begin{cases} u_{t} = a^{2}(u_{xx} + u_{yy}), & -\infty < x, y < \infty, \quad t > 0, \\ u|_{t=0} = y^{2}, & u_{t}|_{t=0} = xy, & -\infty < x, y < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = u_{xx} + xt, & 0 < x < +\infty, & t > 0 \\ u(x,0) = \sqrt{x}, & u_t(x,0) = x^2, \\ u_X(0,t) = 0, & t > 0. \end{cases}$$

Вариант 7

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{xx} + 2u_{xy} - 4u_{xz} + u_{yy} = 0,$$

2. Привести к каноническому виду уравнение

$$xu_{xx} + yu_{yy} + 2\sqrt{xy} u_{yy} = 0.$$

3. Привести к каноническому виду уравнение

$$u_{XX} - 4u_{XV} + 5u_{VV} + 2u = 0.$$

4. Решить задачу Коши, используя формулу Пуассона

$$\begin{cases} u_{t} = a^{2}(u_{xx} + u_{yy}), & -\infty < x, y < \infty, \quad t > 0, \\ u|_{t=0} = y^{2}, & u_{t}|_{t=0} = x, & -\infty < x, y < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = a^2 u_{xx} + x, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = x, & u_t(x,0) = x^2 + 1, \\ u_x(0,t) = 0, & t > 0. \end{cases}$$

Вариант 8

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{xx} - 2u_{xy} - 2u_{yz} + 4u = 0$$
,

2. Привести к каноническому виду уравнение

$$u_{XX} - 6u_{XV} + 13u_{VV} = 0.$$

3. Привести к каноническому виду уравнение

$$xy^2u_{xx} - 2x^2yu_{xy} + x^3u_{yy} - y^2u_x = 0$$

4. Решить задачу Коши, используя формулу Кирхгофа

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + u_{zz}, & -\infty < x, y, z < \infty, \quad t > 0, \\ u|_{t=0} = x^2 + z^2, & u_t|_{t=0} = z, & -\infty < x, y, z < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = a^2 u_{xx} + x, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = 0, & u_t(x,0) = x^2 + 1, \\ u(0,t) = 0, & t > 0. \end{cases}$$

Вариант 9

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$3u_{XY} - 2u_{XZ} + u_{YY} - u_{YZ} - u = 0,$$

2. Привести к каноническому виду уравнение

$$(x-y)u_{xy}-u_x+u_y=0.$$

3. Привести к каноническому виду уравнение

$$u_{XX} + 2u_{XY} - 4u_{YY} = 0.$$

4. Решить задачу Коши, используя формулу Кирхгофа

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + u_{zz}, & -\infty < x, y, z < \infty, \quad t > 0, \\ u|_{t=0} = z^2, & u_t|_{t=0} = y, & -\infty < x, y, z < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = a^{2}u_{xx} + xt^{2}, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = \sin x, & u_{t}(x,0) = x^{2} - 1, \\ u(0,t) = 0, & t > 0. \end{cases}$$

Вариант 10

1. Определить тип уравнения, приведя соответствующую квадратичную форму к нормальному виду

$$u_{XY} - 2u_{XZ} + u_{YY} - 4u_{YZ} - u_X = 0,$$

2. Привести к каноническому виду уравнение

$$u_{XX} - xu_{yy} = 0.$$

3. Привести к каноническому виду уравнение

$$u_{XY} + u_{XZ} - u_{YZ} - u = 0,$$

4. Решить задачу Коши, используя формулу Кирхгофа

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + u_{zz}, & -\infty < x, y, z < \infty, \quad t > 0, \\ u|_{t=0} = z^2, & u_t|_{t=0} = x, & -\infty < x, y, z < \infty. \end{cases}$$

5. Решить задачу Коши, используя метод чётного или нечётного продолжения начальных данных на всю ось OX.

$$\begin{cases} u_{tt} = a^2 u_{xx} + xt^2, & 0 < x < +\infty, \quad t > 0 \\ u(x,0) = \cos x, & u_t(x,0) = x^2 - 1, \\ u_x(0,t) = 0, & t > 0. \end{cases}$$

Варианты заданий для КР

Вариант 1

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^2 u_{\chi\chi}, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = \sin x, & u_t(x,0) = 0, & 0 \le x \le \pi, \\ u(0,t) = t^2, & u(\pi,t) = 0, & t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < l, \quad t > 0, \\ u(x,0) = \sin x, & u_t(x,0) = 0, \quad 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, \quad t \ge 0. \end{cases}$$

3. Решить смешанную задачу для волнового уравнения в прямоугольнике:

$$\begin{cases} u_{tt} = 64\Delta u, 0 < x < 6, 0 < y < 3, & t > 0, \\ u|_{x=0} = u|_{x=6} = 0, & 0 \le y \le 3, & t \ge 0, \\ u|_{y=0} = u|_{y=3} = 0, & 0 \le x \le 6, & t \ge 0, \\ u|_{t=0} = x(3-y), & u_{t}|_{t=0} = 0, & 0 \le x \le 6, 0 \le y \le 3. \end{cases}$$

4. Решить задачу колебания круглой мембраны

$$\begin{cases} u_{tt} = 25\Delta u, & 0 \le r < 2, & 0 < t < +\infty, & t > 0, \\ u(r,0) = \frac{1}{8} \left[1 - \left(\frac{r}{2}\right)^2 \right], & u_t(r,0) = 0, u(2,t) = 0. \end{cases}$$

Вариант 2

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^2 u_{\chi\chi}, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = x, & u_t(x,0) = 0, \quad 0 \le x \le \pi, \\ u(0,t) = t, & u(\pi,t) = 0, \quad t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx} + t \sin x, & 0 < x < l, & t > 0, \\ u(x,0) = \sin x, & u_t(x,0) = 0, & 0 \le x \le \pi, \\ u(0,t) = 0, & u(\pi,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу для волнового уравнения в прямоугольнике:

$$\begin{cases} u_{tt} = 64\Delta u + t \sin \pi x, & 0 < x < 6, 0 < y < 3, & t > 0, \\ u|_{x=0} = u|_{x=6} = 0, & 0 \le y \le 3, & t \ge 0, \\ u|_{y=0} = u|_{y=3} = 0, & 0 \le x \le 6, & t \ge 0, \\ u|_{t=0} = x(3-y), & u_{t}|_{t=0} = 0, & 0 \le x \le 6, 0 \le y \le 3. \end{cases}$$

4. Решить задачу колебания круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < 1, & 0 < t < +\infty, & t > 0, \\ u(r,0) = r, & u_t(r,0) = r^2, u(1,t) = 0. \end{cases}$$

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^2 u_{xx} + x(x-l), & 0 < x < l, \quad t > 0, \\ u(x,0) = x, & u_t(x,0) = 0, & 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, \quad t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < \pi, & t > 0, \\ u(x,0) = 0, & u_t(x,0) = x, & 0 \le x \le \pi, \\ u(0,t) = t, & u(\pi,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу для волнового уравнения в прямоугольнике:

$$\begin{cases} u_{tt} = 64\Delta u + t \sin \pi x \sin \pi y, & 0 < x < 6, 0 < y < 3, \quad t > 0, \\ u \big|_{x=0} = u \big|_{x=6} = 0, & 0 \le y \le 3, \quad t \ge 0, \\ u \big|_{y=0} = u \big|_{y=3} = 0, & 0 \le x \le 6, \quad t \ge 0, \\ u \big|_{t=0} = x (3-y), & u_{t} \big|_{t=0} = 0, & 0 \le x \le 6, 0 \le y \le 3. \end{cases}$$

4. Решить задачу колебания круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < 1, & 0 < t < +\infty, & t > 0, \\ u(r,0) = 0, & u_t(r,0) = r^2, u(1,t) = 0. \end{cases}$$

Вариант 4

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^{2}u_{xx}, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_{t}(x,0) = \sin\frac{2\pi}{l}x, & 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, \quad t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{XX}, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = x, \quad 0 \le x \le l, \\ u(0,t) = t, & u(l,t) = 1, \quad t \ge 0. \end{cases}$$

3. Решить смешанную задачу для волнового уравнения в прямоугольнике:

$$\begin{cases} u_{tt} = 64\Delta u + t\sin \pi x \sin \pi y, & 0 < x < 6, 0 < y < 3, \quad t > 0, \\ u\big|_{x=0} = u\big|_{x=6} = 0, & 0 \le y \le 3, \quad t \ge 0, \\ u\big|_{y=0} = u\big|_{y=3} = 0, & 0 \le x \le 6, \quad t \ge 0, \\ u\big|_{t=0} = 0, & u_{t}\big|_{t=0} = 0, & 0 \le x \le 6, 0 \le y \le 3. \end{cases}$$

4. Решить задачу колебания круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < 1, & 0 < t < +\infty, & t > 0, \\ u(r,0) = 0, & u_t(r,0) = r, u(1,t) = 0. \end{cases}$$

Вариант 5

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < l, \quad t > 0, \\ u(x,0) = \sin \frac{5\pi}{2l} x, & u_t(x,0) = \sin \frac{\pi}{2l} x, & 0 \le x \le l, \\ u(0,t) = 0, & u_x(l,t) = 0, & t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx} + e^{-t} \sin \frac{\pi}{l} x, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + (t+1)\sin x \sin y, & 0 < x, y < \pi, & t > 0, \\ u|_{x=0} = u|_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u|_{y=0} = u|_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u|_{t=0} = 0, & u_{t}|_{t=0} = 0, & 0 \le x \le \pi, 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u + J_0 \left(\frac{\mu_1}{a}r\right), & 0 \le r < a, t > 0, \\ u(r,0) = 0, & u_t(r,0) = 0, 0 \le r \le a, & u(a,t) = 0, t \ge 0. \end{cases}$$

Вариант 6

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx} + e^{-t} \cos \frac{\pi}{2l} x, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u_X(0,t) = 0, & u(l,t) = 0, & t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx} + xe^{-t}, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + \sin t \sin x \sin y, & 0 < x, y < \pi, & t > 0, \\ u|_{x=0} = u|_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u|_{y=0} = u|_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u|_{t=0} = 0, & u_{t}|_{t=0} = 0, & 0 \le x \le \pi, 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u + J_0 \left(\frac{\mu_1}{a} r \right), & 0 \le r < a, t > 0, \\ u(r,0) = J_0 \left(\frac{\mu_3}{a} r \right), & u_t(r,0) = 0, 0 \le r \le a, & u(a,t) = 0, t \ge 0 \end{cases}$$

Вариант 7

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{\chi\chi} + \sin t, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le \pi, \\ u(0,t) = 0, & u_{\chi}(\pi,t) = t, \quad t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{\chi\chi} + t, & 0 < x < l, & t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u_{\chi}(0,t) = 0, & u_{\chi}(l,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + t\cos 3x \cos 4y, & 0 < x, y < \pi, & t > 0, \\ u_{x} \big|_{x=0} = u_{x} \big|_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u_{y} \big|_{y=0} = u_{y} \big|_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u_{t=0} = 0, & u_{t} \big|_{t=0} = 0, & 0 \le x \le \pi, 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < a, \quad 0 \le \varphi < 2\pi, \quad t > 0, \\ u(a, \varphi, t) = 0, & 0 \le \varphi \le 2\pi, \quad t \ge 0, \\ u|_{t=0} = 0, & u_{t}|_{t=0} = J_{3} \left(\frac{\mu_{5}}{a}r\right) \cos 3\varphi, \, 0 \le r \le a, \, 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 8

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{\chi\chi}, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = x - \pi, & u_t(x,0) = 0, & 0 \le x \le \pi, \\ u(0,t) = 0, & u_{\chi}(\pi,t) = t, & t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx} + t, & 0 < x < l, & t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u_x(0,t) - hu(0,t) = t, & u_x(l,t) = t, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + \cos x \cos 5y, & 0 < x, y < \pi, \\ u_{x}|_{x=0} = u_{x}|_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u_{y}|_{y=0} = u_{y}|_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u|_{t=0} = 0, & u_{t}|_{t=0} = 0, & 0 \le x \le \pi, & 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < a, \quad 0 \le \varphi < 2\pi, \quad t > 0, \\ u(a, \varphi, t) = \cos \varphi, & 0 \le \varphi \le 2\pi, \quad t \ge 0, \\ u|_{t-0} = 0, & u_t|_{t-0} = 0, \, 0 \le r \le a, \, 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 9

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{\chi\chi} + t, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = x - \pi, & u_t(x,0) = 0, & 0 \le x \le \pi, \\ u(0,t) = t, & u_{\chi}(\pi,t) = 0, & t > 0. \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < l, \quad t > 0, \\ u(x,0) = 0, & u_t(x,0) = 0, & 0 \le x \le l, \\ u_x(0,t) - hu(0,t) = t, & u_x(l,t) = 0, & t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + \cos x \cos 5y, & 0 < x, y < \pi, \\ u_{x}|_{x=0} = u_{x}|_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u_{y}|_{y=0} = u_{y}|_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u|_{t=0} = 0, & u_{t}|_{t=0} = 2\cos 5y, & 0 \le x \le \pi, 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u, & 0 \le r < a, \quad 0 \le \varphi < 2\pi, \quad t > 0, \\ u(a, \varphi, t) = \sin 2\varphi, & 0 \le \varphi \le 2\pi, \quad t \ge 0, \\ u\big|_{t=0} = 0, & u_t\big|_{t=0} = 0, \, 0 \le r \le a, \, 0 \le \varphi \le 2\pi. \end{cases}$$

1. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 < x < \pi, \quad t > 0, \\ u(x,0) = x, & u_t(x,0) = \sin \frac{\pi}{2l} x + \sin \frac{3\pi}{2l} x, & 0 \le x \le \pi, \\ u(0,t) = 0, & u_x(l,t) = 0, & t \ge 0. M \end{cases}$$

2. Решить смешанную задачу методом Фурье

$$\begin{cases} u_{tt} = u_{\chi\chi}, & 0 < x < l, \quad t > 0, \\ u(x,0) = \cos\frac{\pi}{2l}x, & u_t(x,0) = \cos\frac{3\pi}{2l}x + \cos\frac{5\pi}{2l}x, & 0 \le x \le l, \\ u_{\chi}(0,t) = 0, & u(l,t) = 0, \quad t \ge 0. \end{cases}$$

3. Решить смешанную задачу о вынужденных колебаниях мембраны

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + t \cos x \cos 5y, & 0 < x, y < \pi, \\ u_{x} \mid_{x=0} = u_{x} \mid_{x=\pi} = 0, & 0 \le y \le \pi, & t \ge 0, \\ u_{y} \mid_{y=0} = u_{y} \mid_{y=\pi} = 0, & 0 \le x \le \pi, & t \ge 0, \\ u \mid_{t=0} = 0, & u_{t} \mid_{t=0} = 2 \cos x, & 0 \le x \le \pi, 0 \le y \le \pi. \end{cases}$$

4. Решить задачу колебаний круглой мембраны

$$\begin{cases} u_{tt} = \Delta u + t J_0 \left(\frac{\mu_1}{a} r \right) \sin \left(\frac{2\pi}{h} z \right), & 0 \le r < a, \quad 0 < z < h, \quad t > 0, \\ u(r,0,t) = 0, u(r,h,t) = 0, u(a,z,t) = 0, \quad t \ge 0, \\ u|_{t=0} = 0, \quad u_t|_{t=0} = 0, & 0 \le r \le a, & 0 \le z \le h. \end{cases}$$

Варианты заданий для ИДЗ 2

Вариант 1

1. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx}, \, t > 0, \, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, \, ec\pi u \, |x| < h, \\ 0, \, ec\pi u \, |x| > h. \end{cases} \end{cases}$$

2. Решить краевую задачу, продолжив функцию $\varphi(x)$ на всю ось x

$$\begin{cases} u_t = a^2 u_{xx} - hu, t > 0, 0 < x < +\infty, \\ u(0,t) = 0, t > 0, u(x,0) = x, 0 < x < +\infty. \end{cases}$$

3. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} - \beta u, \, t > 0, \, 0 < x < l, \\ u(0,t) = u_x(l,t) = 0, \, t > 0, \, u(x,0) = x, \, 0 \le x \le l. \end{cases}$$

- 4. Перейти к полярным координатам в операторе Лапласа $\Delta u = u_{\chi\chi} + u_{\chi V}$.
- 5. Построить функцию Грина для полукруга и решить соответствующую задачу Дирихле для уравнения Лапласа.

Вариант 2

1. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx}, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} x, ec \pi u & |x| < h, \\ 0, ec \pi u & |x| > h. \end{cases}$$

2. Решить краевую задачу, продолжив функцию $\varphi(x)$ на всю ось x

$$\begin{cases} u_t = a^2 u_{xx} - hu, t > 0, 0 < x < +\infty, \\ u(0,t) = 0, t > 0, u(x,0) = 1, 0 < x < +\infty. \end{cases}$$

3. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\ u(0,t) = u(l,t) = 0, t > 0, u(x,0) = x, 0 \le x \le l. \end{cases}$$

- 4. Перейти к цилиндрическим координатам в операторе Лапласа $\Delta u = u_{xx} + u_{yy} + u_{zz}.$
- 5. Построить функцию Грина для полусферы и решить соответствующую задачу Дирихле для уравнения Лапласа.

Вариант 3

1. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} - \beta u + t \sin \frac{2\pi x}{l}, t > 0, 0 < x < l, \\ u(0, t) = u(l, t) = 0, t > 0, u(x, 0) = 0, 0 \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в цилиндре

$$\begin{cases} u_t = a^2 \Delta u, & 0 < r < R, 0 < z < h, \quad t > 0, \\ u(x,0) = J_0 \left(\frac{\mu_5}{R}r\right) \sin\left(\frac{2\pi}{h}z\right), & 0 \le r \le R, \quad 0 \le z \le h, \\ u(r,0,t) = u(r,h,t) = 0, & u(R,z,t) = 0. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} - u, t > 0, -\infty < x < +\infty, \\ u_{x}(x,0) = 0, u(x,0) = \begin{cases} h > 0, ecnu \ 0 \le x \le 1, \\ 0, ecnu \ x > 1. \end{cases} \end{cases}$$

- 4. Перейти к сферическим координатам в операторе Лапласа $\Delta u = u_{xx} + u_{yy} + u_{zz}$.
- 5. Решить внутреннюю задачу Дирихле в круге

$$\begin{cases} \Delta u = 0, r < 1, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \cos \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 4

1. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\ u(0,t) = u_X(l,t) = 0, t > 0, u(x,0) = \sin \frac{\pi x}{2l}, 0 \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в цилиндре

$$\begin{cases} u_{tt} = a^2 \Delta u, & 0 < r < R, \quad t > 0, \\ u(r,0) = 1 - \frac{r^2}{R^2}, & 0 \le r \le R, \\ u(R,t) = 0, t \ge 0. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} + t \sin x, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, e \cos u & |x| < h, \\ 0, e \cos u & |x| > h. \end{cases}$$

- 4. Найти фундаментальные решения операторе Лапласа $\Delta u = u_{xx} + u_{yy}$.
- 5. Решить внутреннюю задачу Дирихле в круге

$$\begin{cases} \Delta u = 0, r < 1, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

1. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\ u(0,t) = u_x(l,t) = 0, t > 0, u(x,0) = 1, 0 \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}), & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, \quad t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, \quad t \ge 0, u(x, y, 0) = \sin \frac{3\pi x}{p} \sin \frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} + t \cos x, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, ec\pi u \ |x| < h, \\ 0, ec\pi u \ |x| > h. \end{cases}$$

- 4. Найти фундаментальные решения операторе Лапласа $\Delta u = u_{\chi\chi} + u_{\chi\chi} + u_{\chi\chi} + u_{\chi\chi}$
- 5. Решить внешнюю задачу Дирихле в круге

$$\begin{cases} \Delta u = 0, r < 1, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 6

1. Решить смешанную задачу

$$A \begin{cases}
 u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\
 u(0,t) = u_x(l,t) = 0, t > 0, u(x,0) = l - x, 0 \le x \le l.
\end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}) + (2t+1)\sin\frac{\pi x}{p}\sin\frac{4\pi y}{q}, & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, & t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, & t \ge 0, u(x, y, 0) = \sin\frac{3\pi x}{p}\sin\frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} + \sin t \cos x, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, ec\pi u & |x| < h, \\ 0, ec\pi u & |x| > h. \end{cases}$$

- 4. Найти фундаментальные решения операторе Лапласа $\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2}$.
- 5. Решить внешнюю задачу Дирихле в круге

$$\begin{cases} \Delta u = 0, r < 1, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \sin \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

1. Решить смешанную задачу

$$\Pi \begin{cases} u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\ u_x(0,t) = u(l,t) = 0, t > 0, u(x,0) = l - x, 0 \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}) + \sin t \sin \frac{\pi x}{p} \sin \frac{4\pi y}{q}, & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, & t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, & t \ge 0, u(x, y, 0) = \sin \frac{3\pi x}{p} \sin \frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} + \cos t \cos x, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, ec\pi u \ |x| < h, \\ 0, ec\pi u \ |x| > h. \end{cases}$$

4. Решить задачу Дирихле в кольце

$$\begin{cases} \Delta u = 0, 1 < r < 2, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = 0, u(2, \varphi) = \sin \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

5. Решить внешнюю задачу Дирихле в секторе

$$\begin{cases} \Delta u = 0, \, 0 < r < R, \, 0 < \varphi < \alpha < 2\pi, \\ u(r,0) = u(r,\alpha) = 0, \, 0 \le r \le R, \, u(R,\varphi) = \varphi, \, 0 \le \varphi \le \alpha. \end{cases}$$

Вариант 8

1. Решить смешанную задачу

$$A \begin{cases} u_t = a^2 u_{xx} - \beta u, t > 0, 0 < x < l, \\ u_x(0,t) = u_x(l,t) = 0, t > 0, u(x,0) = l - x, 0 \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}) + \cos t \sin \frac{2\pi x}{p} \sin \frac{4\pi y}{q}, & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, & t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, & t \ge 0, u(x, y, 0) = \sin \frac{3\pi x}{p} \sin \frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = a^2 u_{xx} + sht\cos x, t > 0, -\infty < x < +\infty, \\ u(x,0) = \begin{cases} A, ec\pi u & |x| < h, \\ 0, ec\pi u & |x| > h. \end{cases}$$

4. Решить задачу Дирихле в кольце

$$\begin{cases} \Delta u = 0, 1 < r < 2, 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \cos \varphi, u(2, \varphi) = \sin \varphi, 0 \le \varphi \le 2\pi. \end{cases}$$

5. Решить внутреннюю задачу Нейманадля круга

$$\begin{cases} \Delta u = 0, \ 0 < r < R, \ 0 \le \varphi < 2\pi, \\ \frac{\partial u}{\partial r} |_{r=R} = \cos^3 \varphi, \ 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 9

1. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} + t, t > 0, 0 < x < l, \\ u(0,t) = 0, u_x(l,t) = 1, t \ge 0, u(x,0) = x \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2 (u_{xx} + u_{yy}) + (2t - 1)\sin\frac{2\pi x}{p}\sin\frac{4\pi y}{q}, & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, & t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, & t \ge 0, u(x, y, 0) = \sin\frac{\pi x}{p}\sin\frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} 8u_t = \Delta u + 1, -\infty < x < +\infty, t > 0 \\ u(x,0) = e^{-(x-y)^2}, -\infty < x < +\infty. \end{cases}$$

4. Решить задачу Дирихле в кольце

$$\begin{cases} \Delta u = 0, \ a < r < b, \ 0 \le \varphi < 2\pi, \\ u(a, \varphi) = 1, u(b, \varphi) = 2, \ 0 \le \varphi \le 2\pi. \end{cases}$$

5. Решить внутреннюю задачу Неймана для круга

$$\begin{cases} \Delta u = 0, \, 0 < r < R, \, 0 \le \varphi < 2\pi, \\ \frac{\partial u}{\partial r} \big|_{r=R} = \cos \varphi, \, 0 \le \varphi \le 2\pi. \end{cases}$$

Вариант 10

1. Решить смешанную задачу

$$\begin{cases} u_t = a^2 u_{xx} + t^2, t > 0, 0 < x < l, \\ u(0,t) = 1, u_x(l,t) = 0, t \ge 0, u(x,0) = x \le x \le l. \end{cases}$$

2. Решить задачу распространения тепла в прямоугольнике

$$\begin{cases} u_t = a^2(u_{xx} + u_{yy}) + (t+1)\sin\frac{2\pi x}{p}\sin\frac{2\pi y}{q}, & 0 < x < p, o < y < q, t > 0, \\ u|_{x=0} = u|_{x=p} = 0, & 0 \le y \le q, & t \ge 0, \\ u|_{y=0} = u|_{y=q} = 0, & 0 \le x \le p, & t \ge 0, u(x, y, 0) = \sin\frac{5\pi x}{p}\sin\frac{\pi y}{q}. \end{cases}$$

3. Решить задачу Коши для уравнения теплопроводности

$$\begin{cases} u_t = \Delta u, & -\infty < x < +\infty, t > 0 \\ u(x,0) = e^{-(x-y)^2}, -\infty < x < +\infty. \end{cases}$$

4. Решить задачу Дирихле в кольце

$$\begin{cases} \Delta u = 0, \ a < r < b, \ 0 \le \varphi < 2\pi, \\ u(a, \varphi) = 1, u(b, \varphi) = \cos \varphi, \ 0 \le \varphi \le 2\pi. \end{cases}$$

5. Решить внутреннюю задачу Неймана для круга

$$\begin{cases} \Delta u = 0, \, 0 < r < R, \, 0 \le \varphi < 2\pi, \\ \frac{\partial u}{\partial r} \big|_{r=R} = \sin \varphi, \, 0 \le \varphi \le 2\pi. \end{cases}$$