

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ УЧЕБНО-МЕТОДИЧЕСКАЯ ДОКУМЕНТАЦИЯ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

ЕСТЕСТВОЗНАНИЕ (ФИЗИКА)

Специальность:

40.02.01 Право и организация социального обеспечения

Квалификация выпускника: юрист (углубленная подготовка)

44.02.01 Дошкольное образование

Квалификация выпускника: Воспитатель детей дошкольного возраста с дополнительной подготовкой в области инклюзивного образования дошкольников (углубленная подготовка)

Разработчик: Кукуева Г.Н., преподаватель физики и информатики

Методические	рекомендации приня	ты на заседани	ии предметн	ой (шикловой)	комиссии-
образовательных,	общегуманитарных,	социально-эк	ономических	к, математич	
естественно-научных	к дисциплин, протокол	No 1 OT 31. 6			
Председатель	предметной (цикловой) комиссии	Fr -	/ Федорова Н.У	ζ.
			(подпись)	(ФИО)	

Содержание

Пояснительная записка	4
Тематический план	5
Практическое занятие№1	8
Практическое занятие№2	11
Практическое занятие№3	14
Приложения	15
Информационное обеспечение обучения	16
Лист регистрации изменений	21

Пояснительная записка

Методические рекомендации по практическим занятиям, являющиеся частью учебнометодического комплекса по дисциплине Естествознание (Физика) составлены в соответствии с:

- 1. Федеральным государственным образовательным стандартом по специальности 40.02.01 право и организация социального обеспечения, 44.02.01 дошкольное образование.
- 2. Федерального государственного образовательного стандарта по специальностям среднего профессионального образования, в соответствии с учебным планом по специальностям.
- 3. Примерной программой учебной дисциплины.
- 4. Положением о планировании, организации и проведении лабораторных работ и практических занятий студентов, осваивающих основные профессиональные образовательные про-граммы среднего профессионального образования в колледжах НовГУ.

Методические рекомендации включают 3 практических занятия, предусмотренных рабочей программой учебной дисциплины в объёме 10 часов.

В результате выполнения практических заданий обучающийся должен:

уметь:

- приводить примеры экспериментов и (или) наблюдений, обосновывающих: атомномолекулярное строение вещества, существование электромагнитного поля и взаимосвязь электрического и магнитного полей, волновые и корпускулярные свойства света, необратимость тепловых процессов, разбегание галактик;
- объяснять прикладное значение важнейших достижений в области естественных наук для: развития энергетики, транспорта и средств связи, получения синтетических материалов с заданными свойствами;
- выдвигать гипотезы и предлагать пути их проверки, делать выводы на основе экспериментальных данных, представленных в виде графика, таблицы или диаграммы;
- работать с естественно-научной информацией, содержащейся в сообщениях СМИ, интернет-ресурсах, научно-популярной литературе: владеть методами поиска, выделять смысловую основу и оценивать достоверность информации;

знать:

- смысл понятий: естественно-научный метод познания, электромагнитное поле, электромагнитные волны, квант, эволюция Вселенной, большой взрыв, Солнечная система, галактика;
- вклад великих ученых в формирование современной естественно-научной картины мира.

В результате выполнения практических заданий обучающийся должен использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- оценки влияния на организм человека электромагнитных волн и радиоактивных излучений;
 - энергосбережения.

Тематический план и содержание учебной дисциплины Естествознание (физика)

Наименование	Содержание учебного материала, лабораторные и практические занятия,	Объём	Уровень
разделов и тем	самостоятельная работа обучающихся	часов	усвоения
ФИЗИКА			
Введение	Содержание учебного материала	2	1
	Основные науки о природе (физика, химия, биология), их сходство и отличия. Естественно-		
	научный метод познания и его составляющие: наблюдение, измерение, эксперимент, гипотеза,		
	теория.		
Раздел 1 Механика		16	
Тема 1.1	а 1.1 Содержание учебного материала		1,2,3
Основы кинематики Механическое движение, его относительность. Неравномерное прямолинейное движение.			
	Равноускоренное движение. Свободное падение тел. Криволинейное движение.		
	Самостоятельная работа № 1. Решение физического практикума №1 «Кинематика».	2	
Тема 1.2 Содержание учебного материала		2	1,2,3
Основы динамики.	Первый закон Ньютона. Инерциальные системы отсчета. Взаимодействие тел. Сила, масса.		
Законы сохранения в	Второй закон Ньютона. Третий закон Ньютона. Виды сил в механике. Закон всемирного		
механике	тяготения. Импульс. Закон сохранения импульса. Реактивное движение.		
	Кинетическая и потенциальная энергия. Полная механическая энергия и закон сохранения		
	полной механической энергии. Работа и мощность.		
	Практическое занятие № 1. Решение задач по теме: «Кинематика. Динамика. Законы	4	
	сохранения энергии».		
	Самостоятельная работа № 2. Решение физического практикума №2 «Законы сохранения.	2	
	Динамика».		
Тема 1.3	Содержание учебного материала	2	1,2,3
Механические	Периодические движения. Колебательные процессы. Гармонические колебания. Основные		
колебания, волны и звук	характеристики колебательного движения: амплитуда, фаза, частота, период. Уравнение		
	гармонических колебаний. Математический маятник. Затухающие колебания. Вынужденные		
	колебания. Резонанс. Образование волн. Продольные и поперечные волны. Длина волны. Звук.		
Тема 1.4	Содержание учебного материала	2	1,2,3
Элементы специальной	Преобразования Галилея. Механический принцип относительности. Границы применимости		
теории относительности	классической механики.		
Раздел 2 Тепловые явлени	Раздел 2 Тепловые явления		
Тема 2.1	Содержание учебного материала	2	1
Молекулярно -	Атомы и молекулы. Дискретное (атомно-молекулярное) строение вещества. Тепловое		
кинетическая теория	движение атомов и молекул, температура. Броуновское движение. Взаимодействие молекул.		
строения вещества	Уравнение состояния идеального газа. Основное уравнение молекулярно-кинетической теории		

	C	1	
	газов. Средняя кинетическая энергия поступательного движения одноатомной молекулы и ее		
	связь с температурой. Внутренняя энергия идеального газа.		
Тема 2.2	Содержание учебного материала	2	1
Агрегатное состояние и	Поверхностное натяжение. Явление смачивания. Капиллярные явления. Кристаллические и		
фазовые переходы	аморфные тела. Агрегатные состояния вещества. Кристаллизация и плавление. Испарение и		
	конденсация. Точка росы. Влажность воздуха.		
Тема 2.3	Содержание учебного материала	2	1,2,3
Основы термодинамики	Закон сохранения энергии в тепловых процессах. Необратимый характер тепловых процессов.		
	Тепловые машины, их применение. Экологические проблемы, связанные с применением		
	тепловых машин, и проблема энергосбережения.		
	Самостоятельная работа № 3. Решение физического практикума «Тепловые явления».	2	
	Самостоятельная работа № 4. Подготовка докладов на тему «Симметрия в природе, в физике,	2	
	в литературе и в музыке».		
Раздел 3 Электромагнитн	ые явления	22	
	Содержание учебного материала	1	1,2
Тема 3.1	Электрические свойства тел. Элементарный заряд. Электрические заряды и их взаимодействие.		,
Электрическое поле	Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Потенциал.		
•	Проводники и изоляторы. Поляризация диэлектриков.		
Тема 3.2	Содержание учебного материала	1	1,2,3
Постоянный	Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление.		
электрический ток	Плотность тока. Закон Ома для участка цепи. Сопротивление проводников. Источники тока.		
•	Электродвижущая сила (ЭДС.). Работа и мощность тока. Тепловое действие электрического		
	тока и закон Джоуля-Ленца. Электрический ток в различных средах.		
Тема 3.3	Содержание учебного материала	2	1,2,3
Электромагнетизм	Магнитное поле тока и действие магнитного поля на проводник с током. Электродвигатель.		, ,
•	Электромагнитная индукция. Электрогенератор. Переменный ток. Получение и передача		
	электроэнергии. Закон Ампера. Магнитная индукция. Магнитное поле движущихся зарядов.		
	Сила Лоренца. Магнитный поток. Напряженность магнитного поля. Возникновение		
	электрического поля при изменении магнитного поля. Индукционный ток. Правило Ленца.		
	Э.Д.С. индукции. Явление самоиндукции. Индуктивность. Плотность энергии магнитного		
	поля. Переменный ток.		
	Практическое занятие № 2. Решение задач по теме «Электрическое поле. Электрический	2	
	TOK».		
	Самостоятельная работа № 5. Подготовка докладов: «Изобретение радио», «Изобретение	4	
	телевидения»		
Тема 3.4	Содержание учебного материала	2	1
Электромагнитные	Электромагнитные волны. Радиосвязь и телевидение. Шкала электромагнитных волн.	-	_
колебания и волны			
L			

Тема 3.5	Содержание учебного материала	2	1,2,3
Световые волны	Свет как электромагнитная волна. Интерференция и дифракция света. Естественный и		
	поляризованный свет. Поляризация света.		
	Практическое занятие № 3. Решение задач по теме «Электромагнетизм».	4	
	Самостоятельная работа № 6. Решение физического практикума «Основы электродинамики	4	
	Электромагнитные колебания и волны».		
Раздел 4 Квантовая физи	ка	10	
Тема 4.1	Содержание учебного материала	2	1
Квантовые свойства	Фотоэлектрический эффект. Основные законы фотоэффекта. Корпускулярные свойства		
света	излучения. Использование фотоэффекта в технике. Фотоны. Энергия, импульс масса фотона.		
	Уравнение Эйнштейна для фотоэффекта. Опыты Лебедева.		
Тема 4.2	Содержание учебного материала	2	1
Физика атома	Опыты Резерфорда по рассеянию α - частиц. Модель атома по Резерфорду. Следствия из		
	модели Резерфорда. Спектры излучения атомов и их количественное описание. Модель атома		
	Бора. Постулаты Бора. Опыт Франка и Герца. Лазеры.		
Тема 4.3	Содержание учебного материала	2	1,2,3
Физика атомного ядра и	Состав ядра: протоны и нейтроны. Основные характеристики нуклонов и ядер. Изотопы.		
элементарных частиц	Понятие о ядерных силах. Масса и энергия связи в ядре. Сущность явления радиоактивности.		
	Типы радиоактивного распада. Основные характеристики а - распада, b - распада. Понятие о		
	ядерных реакциях. Законы сохранения в ядерных реакциях. Деление тяжелых ядер. Понятие об		
	элементарных частицах. Радиоактивные излучения и их воздействие на живые организмы.		
	Энергия расщепления атомного ядра. Ядерная энергетика и экологические проблемы,		
	связанные с ее использованием.		
	Самостоятельная работа №7. Решение физического практикума «Квантовая физика».	2	
	Самостоятельная работа №8. Подготовка докладов по темам: Радиоактивность. Ядерная	2	
	энергетика и экология.		
Итого		60	

Содержание практических занятий

Раздел 1 Механика

Тема 1.1 Основы кинематики. Тема 1.2 Основы динамики. Законы сохранения в механике.

Практическое занятие № 1

Решение задач по теме «Кинематика. Динамика. Законы сохранения».

Объем времени: 4 часа

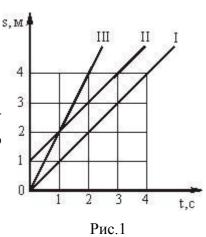
Цель: научиться применять основные понятия, законы и формулы Кинематики для решения задач.

В результате изучения темы студент должен:

уметь: применять знания о законе динамики и законов сохранения на практике для решения задач.

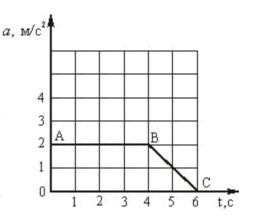
знать: законы динамики, основное уравнение динамики и законы сохранения импульса и энергии.

Требования по теоретической готовности студентов к выполнению практических занятий: механическое движение, его относительность. Неравномерное прямолинейное движение. Равноускоренное движение. Свободное падение тел. Криволинейное движение.


Перечень необходимых средств обучения:

- 1. Учебник по физике
- 2. Конспект лекций
- 3. Условия задач, справочные материалы.

Содержание задания:


Решить задачи и оформить их в соответствии с требованиями.

- 1. Какому виду движения соответствует каждый график на рис.1? С какой скоростью двигалось тело, для которого зависимость пути от времени изображается графиками I, II, III? Записать уравнение движения для графиков I, II.
- 2. Какой физический смысл имеет точка пересечения графиков II и III на рис.1? Какой из графиков соответствует движению с большей скоростью? Можно ли по этим графикам определить траектории движения?

- 3. В безветренную погоду скорость приземления парашютиста V_1 = 4 м/с. Какой будет скорость его приземления, если в горизонтальном направлении ветер дует со скоростью V_2 = 3 м/с? Сделайте чертеж.
- 4. Автомобиль проходит первую половину пути со средней скоростью 70 км/ч, а вторую со средней скоростью 30 км/ч. Определить среднюю скорость на всем пути.

5. По графику зависимости ускорения от времени (рис.2) определить, как двигалось тело от начала отсчета до конца 4-й секунды (участок АВ графика) и за промежуток времени, соответствующий участку ВС графика. В какой момент времени тело имело максимальную скорость?

Чему она равна, если $V_0 = 0$?

Рис.2

- 6. При какой максимальной скорости самолеты могут приземляться на посадочную полосу аэродрома длиной 800 м при торможении с ускорением $a_1 = -2.7$ м/с²? $a_2 = -5$ м/с²?
- 7. Сигнальная ракета, запущенная вертикально вверх, вспыхнула через 6 с после запуска в наивысшей точке своей траектории. На какую высоту поднялась ракета? С ка-кой начальной скоростью ее запустили?
- 8. Луна движется вокруг Земли по окружности радиусом 384 000 км с периодом 27 сут
- 7 ч 43 мин. Какова линейная скорость Луны? Каково центростремительное ускорение Луны к Земле?

Динамика.

- 1. На опускающегося парашютиста действует сила земного притяжения. Объяс-ните, почему он движется равномерно.
- 2. Почему машинисту подъемного крана запрещается резко поднимать с места тяжелые грузы?
- 3. Вагонетка массой 500 кг движется под действием силы 100 Н. Определите ее ускорение.
- 4. Автобус массой 8000 кг едет по горизонтальному шоссе. Какая сила требуется для сообщения ему ускорения 1.2 м/c^2 ?
- 5. Два человека тянут за веревку в разные стороны с силой 90 Н каждый. Разорвется ли веревка, если она выдерживает натяжение до 120 Н?
- 6. На самолет, летящий в горизонтальном направлении, действует в направлении полета сила тяги двигателя $F=15000~\rm H$, сила сопротивления воздуха $F_{\rm C}=11000~\rm H$ и сила давления бокового ветра $F_{\rm B}=3000~\rm H$, направленная под углом $\alpha=90^\circ$ к курсу. Найти равнодействующую этих сил. Какие еще силы действуют на самолет в полете и чему равна их равнодействующая?
- 7. Определите силу, с которой притягиваются друг к другу два корабля массой по 10^7 кг каждый, находящиеся на расстоянии 500 м друг от друга.
- 8. Между всеми телами существует взаимное притяжение. Почему же мы наблюдаем притяжение тел к Земле и не замечаем взаимного тяготения окружающих нас предметов друг к другу?
- 9. Пружину детского пистолета сжали на 3 см. Определите возникшую в ней силу упругости, если жесткость пружины равна 700 Н/м.
- 10. Какой силой можно сдвинуть ящик массой 60 кг, если коэффициент трения между ним и полом равен 0,27? Сила действует под углом 30° к полу (горизонту).

- 11. Какую начальную скорость нужно сообщить сигнальной ракете, выпу-щенной под углом $\alpha = 45^{\circ}$ к горизонту, чтобы она вспыхнула в наивысшей точке траекто-рии, если запал ракеты горит t = 6 с?
- 12. Вычислить первую космическую скорость у поверхности Луны, если радиус Луны R=1760 км, а ускорение свободного падения на Луне составляет 0.17 земного.

Работа. Мощность. Энергия.

- 1. Пуля массой 10 г, летящая горизонтально со скоростью 400 м/с, ударяется в преграду и останавливается. Чему равен импульс, полученный пулей от преграды? Куда он направлен?
- 2. Космический корабль массой 4800 кг двигался по орбите со скоростью 8000 м/с. При торможении из него тормозными двигателями было выброшено 500 кг продуктов сгорания со скоростью 800 м/с относительно его корпуса в направлении движения. Определите скорость корабля после торможения.
- 3. Снаряд, летевший горизонтально со скоростью 480 м/с, разорвался на два осколка равной массы. Один осколок полетел вертикально вверх со скоростью 400 м/с относительно Земли. Определите скорость второго осколка.
- 4. Охотник, плывя по озеру на легкой надувной лодке, стреляет в уток. Какую скорость приобретает лодка в момент выстрела из двух стволов ружья (дуплетом)? Масса охотника с лодкой и ружьем 80 кг, масса пороха и дроби в одном патроне 40 г, начальная скорость дроби 320 м/с, ствол ружья во время выстрела направлен под углом 60° к горизонту.
- 5. Самолет должен иметь для взлета скорость 25 м/с. Длина пробега по полосе аэродрома составляет 100 м. Какую мощность должны развивать двигатели при взлете, если масса самолета 1000 кг и сопротивление движению равно 200 Н?
- 6. Футбольный мяч массой 400 г падает на Землю с высоты 6 м и отскакивает на высоту 2,4 м. Какое количество механической энергии мяча превращается в другие виды энергии?
- 7. Автомобиль массой 5000 кг при движении в горной местности поднялся на высоту 400 м над уровнем моря. Определите потенциальную энергию автомобиля относительно уровня моря.
- 8. Перед загрузкой в плавильную печь чугунный металлолом измельчают ударами падающего бойка молота массой 6000 кг. Определите полную энергию в нижней точке при падении бойка с высоты 9 м. Сравните ее с полной энергией, которую имеет боек, пройдя при падении 5 м.
- 9. Самолет массой 1000 кг летит горизонтально на высоте 1200 м со скоростью 50 м/с. При выключенном двигателе самолет планирует и приземляется со скоростью 25 м/с. Определите силу сопротивления воздуха при спуске, считая длину спуска равной 8 км.
- 10. Достаточна ли мощность электродвигателя **токарного станка 1A62** (7,8 кВт) для обработки детали со скоростью резания 5 м/с, если сопротивление металла резанию составляет 600 Н? КПД станка 0,75.
- 11. Автомобиль, мощность двигателя которого 50 кВт, движется по горизонтально-му шоссе. Масса автомобиля 1250 кг. Сопротивление движению равно 1225 Н. Какую максимальную скорость может развить автомобиль?
- 12.При формировании железнодорожного состава происходят соударения вагонов буферами. Пружины двух буферов вагона сжались при ударе на 10 см каждая. Определите работу сжатия пружин, если коэффициент их жесткости равен $5\cdot 10^6$ H/м.

Рекомендации по выполнению заданий:

- 1. Изучить данную тему по учебнику
- 2. Изучить алгоритм решения задач по данной теме.
- 3. Решить задачи.
- 4. Оформить и сдать в установленные сроки преподавателю.

Требования к результатам работы: решённые задачи.

Форма контроля: индивидуальный.

Критерии оценки:

Оценка «отлично» - все задачи решены подробно, сделаны выводы, перевод в систе-му Си осуществлён оформлено эстетично в соответствии с требованиями.

Оценка «хорошо» - решение с небольшими неточностями, оформлено эстетично. Оценка «удовлетворительно» - 50% требований отсутствует, оформлено не эстетично.

Оценка «неудовлетворительно» - задание не выполнено.

Список рекомендуемой литературы:

- 1. Самойленко П.И. Физика. М.: Академия, 2009. 400 с.
- 2. Конспекты лекций.

Раздел 3 Электромагнитные явления

Тема 3.1 Электрическое поле.

Тема 3.2 Постоянный электрический ток.

Практическое занятие № 2

Объем времени: 2 часа.

Решение задач по теме «Электрическое поле. Электрический ток»

Цель: научиться применять основные понятия, законы и формулы темы «Электрическое поле и электрический ток» для решения задач.

В результате изучения темы студент должен:

уметь: решать задачи по данной теме.

знать: что такое электрическое поле и электрический ток, основные законы и физические характеристики электричества.

Требования по теоретической готовности студентов к выполнению практических занятий: Электрические свойства тел. Элементарный заряд. Электрические заряды и их взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Потенциал. Проводники и изоляторы. Поляризация диэлектриков. Постоянный электрический ток. Сила тока, напряжение, электрическое сопротивление. Плотность тока. Закон Ома для участка цепи. Сопротивление проводников. Источники тока. Электродвижущая сила (ЭДС.). Работа и мощность тока. Тепловое действие электрического тока и закон Джоуля-Ленца. Электрический ток в различных средах.

Перечень необходимых средств обучения:

- 1. учебник по физике
- 2. конспект лекций
- 3. условия задач, справочные материалы.

Содержание заданий

Закон Кулона

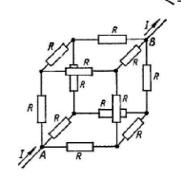
- 1. Два заряда, находясь в воздухе на расстоянии 0.05 м, действуют друг на друга с силой $1.2\cdot10^{-4}$ H, а в некоторой непроводящей жидкости на расстоянии 0.12 м с силой $1.5\cdot10^{-5}$ H. Какова диэлектрическая проницаемость жидкости?
- 2. Заряд в $1,3\cdot 10^{-9}$ Кл в керосине на расстоянии 0,005 м притягивает к себе второй заряд с силой $2\cdot 10^{-4}$ Н. Найдите величину второго заряда. Диэлектрическая проницаемость керосина равна 2.
- 3. На каком расстоянии друг от друга надо расположить два заряда по $5\cdot 10^{-4}$ Кл, чтобы в керосине сила взаимодействия между ними оказалась равной 0,5 H? Диэлектрическая проницаемость керосина равна 2.
- 4. Два одинаковых точечных заряда взаимодействуют в вакууме на расстоянии 0,1 м с такой же силой, как в скипидаре на расстоянии 0,07 м. Определите диэлектрическую проницаемость скипидара.
- 5. Два заряда по $3.3 \cdot 10^{-8}$ Кл, разделенные слоем слюды, взаимодействуют с силой $5 \cdot 10^{-2}$ Н. Определите толщину слоя слюды, если ее диэлектрическая проницаемость равна 8.
- 6. Определите расстояние r_1 , между двумя одинаковыми электрическими зарядами, находящимися в масле с диэлектрической проницаемостью 3, если сила взаимодействия между ними такая же, как в пустоте на расстоянии $r_2 = 0.3$ м.

Напряженность электрического поля

1. Два заряда $q_1 = +3 \cdot 10^{-7}$ Кл и $q_2 = -2 \cdot 10^{-7}$ Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите напряженность поля в точке C, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q_2 .

- 2. В некоторой точке поля на заряд $5 \cdot 10^{-9}$ Кл действует сила $3 \cdot 10^{-4}$ Н. Найдите напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.
- 3. Два заряда $q_1 = +2 \cdot 10^{-7}$ Кл и $q_2 = -2 \cdot 10^{-7}$ Кл расположены в керосине на расстоянии 0,2 м друг от друга. Какова напряженность поля в точке, находящейся между зарядами на расстоянии

0,08 м от положительного заряда на линии, соединяющей центры зарядов?


4. Напряженность поля в керосине, образованного точечным зарядом $10 \cdot 10^{-7}$ Кл, на некотором расстоянии от него равна 5 Н/Кл. Определите расстояние от заряда до данной точки поля и силу, с которой поле действует на заряд $3 \cdot 10^{-6}$ Кл, помещенный в данную точку.

Разность потенциалов

- 1. Какова разность потенциалов начальной и конечной точек пути электрона в электрическом поле, если на этом пути он увеличил свою скорость с 10^7 до $2\cdot 10^7$ м/с?
- 2. В поле точечного заряда 10^{-7} Кл две точки расположены на расстоянии 0,15 и 0,2 м от заряда, Найдите разность потенциалов этих точек.
- 3. Электрон летит из точки A к точке B, между которыми разность потенциалов равна 100 B. Какую скорость будет иметь электрон в точке B, если в точке A его скорость была равна нулю?
- 4. Два точечных заряда $7\cdot10^{-9}$ и $14\cdot10^{-9}$ Кл находятся на расстоянии 0,4 м. Какую работу надо совершить, чтобы сблизить их до расстояния 0,25 м?

Параллельное и последовательное соединение проводников 82

- 1. Найдите сопротивление участка цепи, изображенного на рисунке, если $R1=4~\mathrm{Om},~R2=6~\mathrm{Om},~R3=3~\mathrm{Om}.$
- 2. Чему равно общее сопротивление участка, изображенного на рисунке, если R1 = 60 Ом, R2 = 12 Ом, R3 = 15 Ом и R4 = 3 Ом?
- 3. Из 12 одинаковых сопротивлений спаян куб. Найдите сопротивление этого каркаса при включении его в цепь вершинами А и В, как показано на рисунке.

Закон Она для полной цепи

- 1. ЭДС батарейки карманного фонарика равна 3,7 В, внутреннее сопротивление 1,5 0м. Батарейка замкнута на сопротивление 11,7 Ом. Каково напряжение на зажимах батарейки?
- 2. Напряжение на зажимах генератора 36 В, а сопротивление внешней цепи в 9 раз больше в утренняя сопротивления. Какова ЭДС генератора?
- 3. Найдите ЭДС и внутреннее сопротивление гальванического элемента, если при сопротивлении внешней цепи 2 Ом ток равен 0,6 A, а при сопротивлении 1 Ом ток равен 1 A.
- 4. Определите силу тока при коротком замыкании батареи с ЭДС 9 В, если при замыкании ее на внешнее сопротивление 3 Ом ток в цепи равен 2 А.

Работа и мощность постоянного тока

- 1. Лампа, рассчитанная на напряжение 127 В, потребляет мощность 50 Вт. Какое дополнительное сопротивление нужно присоединить к лампе, чтобы включить ее в сеть с напряжением 220 В?
- 2. Две лампы мощностью 90 и 40 Вт включены параллельно в сеть, с напряжением 220 В. Определите сопротивление каждой лампы и ток, протекающий через каждую лампу.
- 3. В школе одновременно включены 20 ламп по 60 Вт и 10 ламп по 40 Вт. Определите ток в общей части цепи для напряжения 220 В.
- 4. Кинопроекционная лампа мощностью 300 Вт рассчитана на напряжение 110 В. Определите величину дополнительного сопротивления, позволяющего включать ее в сеть с напряжением 127 В.
- 5. Во сколько раз сопротивление лампы, рассчитанной на напряжение 220 В, должно быть больше сопротивления лампы такой же мощности, рассчитанной на 127 В?

Закон Джоуля-Ленца

- 1. На плитке мощностью 0,5 кВт нагревается чайник, в который налит 1 л воды, при температуре 16°С. Вода в чайнике закипела через 20 мин после включения плитки. Какой процент тепла потерян при этом на нагревание самого чайника, на излучение и т.д.? Каков КПД установки?
- 2. Два проводника, сопротивление которых 5 и 7 Ом, соединяют параллельно и подключают к источнику электрической энергии. В первом выделилось 1?,64 Дж энергии. Какое количество энергии выделилось во втором проводнике за это же время?
- 3. В кипятильнике емкостью 5 л с КПД 70% вода нагревается от 10 до 100° С за 20 мин. Какой силы ток проходит по обмотке нагревателя, если разность потенциалов между его концами равна 220 В?
- 4. Два проводника сопротивлением 10 и 23 Ом включены в сеть напряжением 100 В. Какое количество теплоты выделится за 1 с в каждом проводнике, если их соединить: а) последовательно, б) параллельно?
- 5. Сколько времени будут нагреваться 1,5 л воды от 20°C до 100°C в электрическом чайнике мощностью 600 Вт, если КПД, его 80%?

Рекомендации по выполнению заданий:

- 1. Изучить данную тему по учебнику
- 2. Изучить алгоритм решения задач по электричеству
- 3. Решить задачи
- 4. Оформить и сдать в установленные сроки преподавателю

Требования к результатам работы: решённые задачи.

Форма контроля: предъявление преподавателю индивидуально.

Критерии оценки:

Оценка «отлично» - все задачи решены подробно, сделаны выводы, перевод в систему Си осуществлён оформлено эстетично в соответствии с требованиями.

Оценка «хорошо» - решение с небольшими неточностями, оформлено эстетично.

Оценка «удовлетворительно» - 50% требований отсутствует, оформлено не эстетично.

Оценка «неудовлетворительно» - задание не выполнено.

Список рекомендуемой литературы:

- 1. Cамойленко П.И. Физика. M.: Академия, 2014 400 c.
- 2. Конспекты лекций.

Раздел 3 Электромагнитные явления

Тема 3.3 Электромагнетизм.

Тема 3.5 Световые волны

Практическое занятие №3

Решение задач по теме «Электромагнетизм».

Объем времени: 4 часа.

Цель: научиться применять основные понятия, законы и формулы темы «Электромагнитные колебания и волны» для решения задач.

результате изучения темы студент должен:

уметь: решать задачи на данную тему

знать: знать природу света. Волновые свойства света: интерференцию и дифракцию.

Что такое естественный и поляризованный свет. Явление поляризации света.

Требования по теоретической готовности студентов к выполнению практических занятий: свет как электромагнитная волна. Интерференция и дифракция света. Естественный и поляризованный свет. Поляризация света.

Перечень необходимых средств обучения:

- 1. Учебник по физике
- 2. Конспект лекций
- 3. Условия задач, справочные материалы.

Содержание заданий:

Электромагнитные волны

- 1. Радиопередатчик искусственного спутника Земли работает на частоте 20 МГц. Какова длина волны передатчика?
- 2. На какой частоте должен работать радиопередатчик корабля, передающий сигнал бедствия «SOS», если по международному соглашению этот сигнал передается на волне длиной 600 м?

Скорость света. Длина световой волны.

- 1. Длина волны красного света в воздухе равна 700 нм. Какова длина волны данного света в воде? Показатель преломления воды 1,33.
- 2. Какова длина волны желтого света паров натрия в стекле с показателем преломления 1,56? Длина волны этого света в воздухе равна 589 нм.
- 3. Длина волны желтого света натрия в вакууме 590 нм, а в воде 442 нм. Каков показатель преломления воды для этого света?

Интерференция и дифракция света

- 1. Найдите наибольший порядок спектра для желтой линии натрия с длиной волны 589 нм, если период дифракционной решетки равен 2 мкм.
 - 2. Могут ли интерферировать световые волны, идущие от двух электрических ламп?
- 3. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального и на расстоянии 1,8 м от решетки. Найдите длину световой волны.
- 4. Длина волны желтого света паров натрия равна 589 нм. Третье дифракционное изображение щели при освещении решетки светом паров натрия оказалось расположенным от центрального изображения на расстоянии 16,5 см, а от решетки оно было на расстоянии 1,5 м. Каков период решетки?
- 5. Почему крылья стрекоз имеют радужную окраску? Почему возникают радужные полосы в тонком слое керосина, плавающем на поверхности воды?

Требования к результатам работы: решённые задачи.

Форма контроля: предъявление преподавателю индивидуально.

Критерии оценки:

Оценка «отлично» - все задачи решены подробно, сделаны выводы, перевод в систему Си осуществлён оформлено эстетично в соответствии с требованиями.

Оценка «хорошо» - решение с небольшими неточностями, оформлено эстетично.

Оценка «удовлетворительно» - 50% требований отсутствует, оформлено не эстетично.

Оценка «неудовлетворительно» - задание не выполнено.

Список рекомендуемой литературы:

- 1. Самойленко П.И. Физика. М.: Академия, 2014. 400 с. 2. Конспекты лекций.

Справочные данные для решения задач Основные физические постоянные (округление значения)

Физическая постоянная	Обозначение	Числовые значения
Ускорение свободного падения Гравитационная постоянная Число Авогадро Универсальная газовая постоянная Постоянная Больцмана Заряд электрона Скорость света в вакууме Постоянная закона Стефана-Больцмана Постоянная закона смещения Вина Постоянная второго закона Вина Постоянная Планка Постоянная Планка Постоянная Планка Постоянная Планка на 2□ Постоянная Ридберга (для атома водорода 1 Порадиус первой боровской орбиты Комптоновская длина волны электрона Магнетон Бора Энергия ионизации атома водорода Атомная единица массы	g N _A R k e c C' C' h h h R r ₁ μ _B E _i	9,81 м/с ² 6,67·10 ⁻¹¹ м/ (кг·с ²) 6,02·10 ²³ моль 1 8,31 ДжДмоль·К) 1,38·10 ⁻²³ Дж/К 1,60·10 ⁸ Кл 3,00·10 ⁸ М/с 5,67·10 ⁻⁸ Вт/(м ² ·К ⁴) 2,90·10 ⁻³ м·К 1,30·10 ⁻³ Вт/(м ³ ·К ⁵) 6,63·10 ⁻³⁴ Дж·с 1,05·10 ⁻³⁴ Дж·с 1,097·10 ⁷ м ⁻¹ 0,529·10 ⁻¹⁰ м 2,43·10 ⁻¹² м (2,43 дм) 0,927·10 ⁻²³ А·м 2,18·10 ⁻¹⁸ Дж, (13,6
Коэффициент пропорциональности между энергией и массой	c^2	эВ) 1,660·10 ⁻²⁷ кг 9,00·10 ¹⁶ Дж/кг (931 МэВ/а.е.м.)

Некоторые астрономические величины

II.	
Величина (среднее значение)	
$6,37 \cdot 10_{24}^{6} \text{ M}$	
5,98·10 ²⁴ кг	
6,95·10° M	
5,98·10 ²⁴ кг 6,95·10 ⁸ м 1,98·10 ³⁰ кг	
1,74·10° M	
1,74·10 ⁶ м 7,33·10 ²² кг	
$1,49\cdot10^{11}_{0}$ M	
1,49·10 ¹¹ M 3,84·10 ⁸ M	

Плотность твёрдых тел

плотность твердых тел					
Твёрдое тело	Плотность, кг/м3	Твёрдое тело	Плотность, кг/м3		
Алюминий	2,7·10 ³	Медь	8,9·10 ³		
Барий	$3,5\cdot10^{3}$	Никель	$ 8,9\cdot10^{3} $		
Ванадий	$6.0 \cdot 10^{3}$	Свинец	11,3.10		
Висмут	9,8.10	Серебро	10,5·10 ³		
Железо	$7.8 \cdot 10^{3}$	Цезий	1,9.10		
Литий	$0,53 \cdot 10^3$	Цинк	7,1·10 ³		

Плотность жидкостей

Жидкость	Плотность, кг/м3	Жидкость	Плотность, кг/м3
Вода (при 4 ⁰ C) Глицерин	1,00·10 ³ 1,26·10 ³	Ртуть Спирт	13,6·10 ³ 0,80·10 ³
		Сероуглерод	1,26·10 ³

Плотность газов (при нормальных условиях)

Title						
Газ	Плотность, кг/м3	Газ	Плотность, кг/м 3			
Водород Воздух	0,09 1,29	Гелий Кислород	0,18 1,43			

Коэффициент поверхностного натяжения жидкостей

Жидкость	Коэффициент, мН/м	Жидкость	Коэффициент, мН/м
Вода Мыльная во- да	72 40	Ртуть Спирт	500 22

Эффективный диаметр молекул

Газ	Диаметр, м	Газ	Диаметр, м
Азот	3,0·10 ⁻¹⁰	Гелий	1,9·10 ⁻¹⁰
Водород	2,3·10 ⁻¹⁰	Кислород	$2,7\cdot 10^{-10}$

Диэлектрическая проницаемость

F1			
Вещество	Проницаемость	Вещество	Проницаемость
Парафин	2,0	Вода	81
Стекло	7,0	Масло трансфор- маторное	2

Удельное сопротивление металлов

Металл	Удельное сопро- тивление, Ом·м	Металл	Удельное сопро- тивление, Ом·м
Железо	9,8·10 ⁻⁸	Медь	1,7·10 ⁻⁸
Нихром	1,1·10 ⁻⁶	Серебро	1,6·10 ⁻⁸

Энергия ионизации

Вещество	Дж	эВ
Водород	2,18·10 ⁻¹⁸	13,6

Гелий	3,94·10 ⁻¹⁸	24,6
Ртуть	1,66·10 ⁻¹⁰	10,4
Литий	8,62·10 ⁻¹⁷	5,39

Подвижность ионов в газах, м $^2/(B \cdot c)$

Газ	Положительные ионы	Отрицательные ионы
Азот Водород	1,27·10 ⁻⁴ 5,4·10 ⁻⁴	1,81·10 ⁻⁴ 7,4·10 ⁻⁴
Воздух	1,4·10 ⁻⁴	1,9·10 ⁻⁴

Показатель преломления

Вещество	Показатель
Вода	1,33
Глицерин	1,47
Стекло	1,5
Алмаз	2,42

Работа выхода электронов

Металл	Дж	эВ
Калий	3,5·10 ⁻¹⁹	2,2
Литий	$ 3,7\cdot10^{-1} $	2,3
Платина	10.10	6,3
Рубидий	3,4·10 ⁻¹⁹	2,1
Серебро	$7,5.10^{-19}$	4,7
Цезий	3,2.10	2,0
Цинк	6,4·10 ⁻¹⁹	4,0

Массы атомов лёгких изотопов

Изотоп	Символ	Масса (а.е.м.)
Нейтрон	n 0 n 1	1,00867
Водород	1H ¹ 1H ² 1H ³	1,00783 2,01410
		3,01605
Гелий	² He ³	3,01603 4,00260
Литий	3Li ⁶	6,01513
	₃ Li ⁷	7,01601
Берилий	4Be	7,01693
	4Be ⁹	9,01219

Бор	₅ B ¹⁰	10,01294
	₅ B ¹¹	11,00930
Углерод	₆ C ¹²	12,00000
	$6^{\text{C}^{13}}$	13,00335
	6C ¹² 6C ¹³ 6C ¹⁴	14,00324
Азот	7N ¹⁴	14,00307
Кислород	8O ¹⁶	15,99491
	₈ O ¹⁷	16,99913

Относительные атомные массы (атомные веса) А и порядковые номера Z некоторых элементов

Элемент	Химический символ	A	Z
Азот	N	14	7
Алюминий	Al	27	13
Аргон	Ar	40	18
Водород	Н	1	1
Вольфрам	$ \mathbf{W} $	184	74
Гелий	He	4	2
Железо	Fe	56	26
Золото	Au	197	79
Калий	K	39	19
Кальций	Ca	40	20
Кислород	О	16	8
Магний	Mg	24	12
Марганец	Mn	55	25
Медь	Cu	64	29
Молибден	Mo	96	42
Натрий	Na	23	11
Неон	Ne	20	10
Никель	Ni	59	28
Олово	Sn	119	50
Платина	Pt	195	78
Ртуть	Hg	201	80
Cepa	S	32	16
Серебро	Ag	108	47
Уран	U	238	92
Углерод	C	12	6
Хлор	Cl	35	17

Периоды полураспада радиоактивных изотопов

Изотоп	Символ	Период полураспада
Магний	$12^{12} Mg^{2/1} 15^{12} P^{32}$	10 мин
Фосфор	27Co ⁶⁰	14,3 суток

Кобальт 38Sr Стронций 53I Йод 58Ce Церий 86Rn Радон 88Ra Радий 89Ac Актиний 225	5,3 года 27 лет 8 суток 285 суток 3,8 суток 1620 лет 10 суток
---	---

Масса и энергия покоя некоторых частиц

Частица	1	m_0	E ₀		
Тастица	КГ	а.е.м.	Дж	МэВ	
Протон Нейтрон Дейтрон -частица	9,11·10 ⁻³¹ 1,672·10 ⁻² ' 1,675·10 ⁻² ' 3,35·10 ⁻² ' 6,64·10 ⁻² ' 2,41·10 ⁻²⁸	0,00055 1,00728 1,00867 2,01355 4,00149 0,14498	8,16·11 ⁻¹⁴ 1,50·10 ⁻¹⁰ 1,51·10 ⁻¹⁰ 3,00·10 ⁻¹⁰ 5,96·10 ⁻¹⁰ 2,16·10 ⁻¹¹	0,511 938 939 1876 3733 135	

Примечания:

1.В табл. не включены кратные и дольные единицы, так как все они получаются одинаково путём добавления соответствующих приставок.

Например:

1 мегаэлектрон-вольт (МэВ) = 10^6 эВ; 1 микрометр (мкм) = 10^{-6} м; 1 наноньютон (нН) = 10^{-9} Н.

2. Электрическая и магнитная постоянные имеют следующие значения в единицах СИ: электрическая постоянная; магнитная постоянная, где c – скорость света в вакууме.

Приставка		IC no amus amus us as a us as a us		
Название	Обозначение	Кратность и дольность		
тера-	T	$ \begin{array}{c} 1\ 000\ 000\ 000\ 000\ \overline{9}\ 10^{12} \\ 1\ 000\ 000\ 000\ \overline{6}\ 10^{9} \\ 1\ 000\ 000\ \overline{9}\ 10^{6} \\ 1\ 000\ 000\ \overline{9}\ 10^{12} \end{array} $		
гига-	Γ	$1\ 000\ 000\ 000 = 10^9$		
мега-	M	$1\ 000\ 000 = 10^{\circ}$		
кило-	к	$1\ 000 = 10^3$		
гекто-	Γ	$100 = 10^2$		
дека-	да	$10 = 10^{1}$		

Информационное обеспечение обучения

Основные источники:

1. Самойленко П.И. Физика. – M.: Академия, 2014 – 400 c

Дополнительные источники:

- 2. Самойленко П.И. Физика. М.: Академия, 2009. 400 с
- 3. Самойленко П.И., Сергеев А.В. Физика (для нетехнических специальностей): Задачник М.: Изд. Центр «Академия», 2006. 400c.
- 4. Чернова Н.М., Галушин В.М., Константинов В.М. «Основы экологии», учебник для 10 класса М.: «Дрофа», 2004.-304с.
- 5. Савельев И.В., Курс общей физики: Уч. пособие в 3-х т. М.: Наука, Гл. ред. физ.-мат. лит., 2007.
- 6. Мякишев Г.Я., Буховцев Б.Б., Физика: Шк. уч-к для 10-11 кл. М.: Просвещение, 2013.
- 7. Яворский Б.М., Селезнев Ю.А., Справочное руководство по физике. М.: Наука, 2009.
- 8. Тимофеева С.С., Медведева С.А., Ларионова Е.Ю. «Основы современного естествознания и экология»: Ростов-на-Дону «Феникс», 2014
- 9. Φ едеральный компонент государственного стандарта общего образования. / Министерство образования РФ. $M_{\cdot,}$ 2004.

Интернет-ресурсы:

- 1. www. krugosvet.ru /универсальная энциклопедия «Кругосвет».
- 2. http:// sciteclibrary.ru /научно-техническая библиотека.
- 3. www.auditorium.ru /библиотека института «Открытое общество».

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Номер	р Номер листа			Всего лис- ФИО и	ФИО и подпись ответст-	Дата внесе-	Дата введения	
изме- нения	измененного	замененного	нового	изъятого	тов в доку- менте	венного за внесение изме- нения	ния измене- ния	изменения