Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра общей и экспериментальной физики

УТВЕРЖНАНО СО ИЗ ЭМИНОВ « 15 в Соступувание в 2018 г.

Физика

Учебный модуль по направлениям подготовки 06.03.01 — Биология ПРОФ. Биохимия 05.03.06 — Экология и природопользование 05.03.02 — География. ПРОФ. Рекреационная география и туризм Рабочая программа

СОГЛАСОВАНО	Разработал
Начальник учебного отдела	Доцент кафедры ОЭФ НовГУ
О.Б. Широколобова	С. А. Сабельников
« <u>do</u> » <u>11</u> 2018 г.	<u>«18 » / од.</u> 2018 г.
Заведующий кафедрой биологии	Принято на заседании кафедры ОЭФ
и биологической химии НовГУ	« <u>18</u> » <u>09</u> 2018 г. Протокол № <u>1</u>
Н. Н. Максимюк	Заведующий кафедрой ОЭФ
« <u>46</u> » /0 2018 г.	В. В. Гаврушко
Заведующий кафедрой экологии и	
природопользования НовГУ	
В. Литвинов	
« <u>18</u> » <u>09</u> 2018 г.	
Заведующий кафедрой географии,	
страноведения и туризма НовГУ	
Н. Г. Дмитрук	
« 18» сенбебр 32018 г.	

1. Цели освоения модуля

Модуль «Физика» включён в базовые части учебных планов направлений 06.03.01 — Биология ПРОФ. Биохимия, 05.03.06 — Экология и природопользование и 05.03.02 — География. ПРОФ. Рекреационная география и туризм.

Выпускники степени бакалавров получают соответствующих направлений. Квалификационные характеристики таких специалистов требуют наличия навыков использования знаний по физике, умений использовать измерительные физические приборы, владения навыками обработки экспериментальных данных. В связи с этим целью данного модуля является формирование у студентов знаний фундаментальных законов физики. Кроме того, знание данной дисциплины позволяет расширить у обучаемых представления о применении физических законов на практике, а также систематизировать представления о научных методах познания.

Достижение этих целей преподавание данного модуля включает в себя решение следующих задач:

- 1. Формирование у студентов знаний основных физических понятий, законов и теорий;
- 2. Формирование у студентов знаний об экспериментальных методах физики;
- 3. Обучение студентов правилам техники безопасности при выполнении лабораторных работ;
- 4. Формирование у студентов навыков по обработке экспериментальных данных;

2 Место учебного модуля в структуре образовательной программы направления подготовки

В соответствии с Федеральным государственным образовательным стандартом направлений 06.03.01 — Биология ПРОФ. Биохимия, 05.03.06 — Экология и природопользование и 05.03.02 — География. ПРОФ. Рекреационная география и туризм модуль «Физика» включён в базовые части учебных планов. На изучение модуля выделено 3 зачётные единицы. Это составляет 108 часов

Для изучения модуля используются знания по физике из школьного курса физики, знания по школьному курсу математики и по высшей математике, полученные на предыдущем курсе, а также знания по химии и экологии, полученные на предыдущем курсе.

Полученные в результате изучения данной дисциплины знания используются при изучении различных курсов химии и биологии, экологии, а также географии. Знания по модулю «Физика» будут использоваться при выполнении различных лабораторных работ по специальным дисциплинам, а также при выполнении работ различных практик, особенно при обработке разного рода экспериментальных работ

3 Требования к результатам освоения учебного модуля

Процесс изучения учебного модуля направлен на формирование компетенции ОПК2.

(ОПК-2) Способность использовать экологическую грамотность и базовые знания в области физики, химии, наук о Земле и биологии в жизненных ситуациях; прогнозировать последствия своей профессиональной деятельности, нести ответственность за свои решения.

В результате освоения учебного модуля студент должен знать, уметь и владеть:

Код компетенции	Уровень освоения компетенции	Знать	Уметь	Владеть
ОПК -2	базовый	терминологию, используемую в физике, определения и основные законы, используемые в физике; разделы и законы физики, связанные с видом профессиональной деятельности; правила записи и обработки экспериментальных данных; технику безопасности при работе с приборами и установками	работать с информацией (отбирать, обобщать, анализировать, синтезировать); логически, верно, аргументировано и ясно строить устную и письменную речь; применять для решения задач теоретического, экспериментального и прикладного характера соответствующий физикоматематический аппарат и соответствующие экспериментальные методы; обрабатывать экспериментальные данные, проводить анализ результатов, рассчитывать погрешности измерений	навыками работы с учебной и специальной литературой, а также поисковыми системами сети Интернет; навыками составления отчётной документации; навыками работы с измерительными приборами и выполнения физических экспериментов

4 Структура и содержание учебного модуля

4.1.1 Трудоёмкость учебного модуля (форма обучения – очная)

Учебная работа (УР)	Всего	Распределение по семестрам	Коды формируемых компетенций	
		2	Н форм комп	
Трудоёмкость модуля в зачётных единицах (ЗЕТ)	3	3		
Распределение трудоёмкости по				
видам УР в академических часах	108	108	$O\Pi K - 2$	
(AY):				
1) УЭМ 1: Механика, молекулярная	36	36	ОПК – 2	
физика и термодинамика	30	30	OHK – Z	
- лекции	9	9		
- практические занятия	3	3		
(семинары)	3	3	ОПК – 2	
- лабораторные работы	6	6	OTIK – 2	
- аудиторная СРС	3	3		
- внеаудиторная СРС	18	18		
2) УЭМ 2: Электромагнетизм и	36	36	ОПК – 2	
волновая и квантовая оптика	30	30	OHK – Z	
- лекции	9	9		
- практические занятия (семинары)	3	3	OTIL 2	
- лабораторные работы	6	6	ОПК – 2	
- аудиторная СРС	3	3		
- внеаудиторная СРС	18	18		
3) УЭМ 3: Строение атома. Атомное	26	26	OHIC 2	
ядро. Радиоактивность	36	36	ОПК – 2	
- лекции	9	9		
- практические занятия	3	3		
(семинары)	3	3		
- лабораторные работы	6	6	ОПК – 2	
- аудиторная СРС	3	3		
- внеаудиторная СРС	18	18		
Аттестация:	0	0		
- зачёт*)				

^{*)} зачёты принимаются в часы аудиторной самостоятельной работы студентов.

4.1.2 Трудоёмкость учебного модуля (форма обучения – очно-заочная)

Учебная работа (УР)	Всего	Распределение по семестрам	Коды формируемых компетенций
Трудоёмкость модуля в зачётных единицах (ЗЕТ)	3	3	
Распределение трудоёмкости по видам УР в академических часах (АЧ):	108	108	ОПК – 2
1) УЭМ 1: Механика, молекулярная физика и термодинамика	36	36	ОПК – 2
- лекции	6	6	
- лабораторные работы	4	4	ОПК – 2
- внеаудиторная СРС	26	26	
2) УЭМ 2: Электромагнетизм и волновая и квантовая оптика	36	36	ОПК – 2
- лекции	6	6	
- лабораторные работы	4	4	ОПК – 2
- внеаудиторная СРС	26	26	
3) УЭМ 3: Строение атома. Атомное	36	36	ОПК – 2
ядро. Радиоактивность	30 30		OHK – Z
- лекции	6	6	
- лабораторные работы	4	4	ОПК – 2
- внеаудиторная СРС	26	26	
Аттестация:	0	0	
- зачёт*)			

^{*)} зачёты принимаются в часы аудиторной самостоятельной работы студентов.

4.2 Содержание и структура разделов учебного модуля

УЭМ 1 Механика, молекулярная физика и термодинамика

- 1.1. Кинематика и динамика материальной точки;
- 1.2. Законы сохранения в механике. Первое начало термодинамики;
- 1.3. Уравнение состояния газов. Газовые законы. Закон Дальтона.

УЭМ 2 Электромагнетизм и волновая и квантовая оптика

- 2.1. Основные понятия и законы электростатики;
- 2.2. Постоянный и переменный электрический ток;
- 2.3. Основные понятия и законы волновой и квантовой оптики.

УЭМ 3 Строение атома. Атомное ядро. Радиоактивность

3.1. Модели строения атома. Постулаты Бора. Боровская теория водородоподобного атома;

- 3.2. Строение ядра атома. Энергия связи ядер.
- 3.3. Радиоактивность. Основной закон радиоактивного распада.

Календарный план, наименование разделов учебного модуля с указанием трудоёмкости по видам учебной работы представлены в технологической карте учебного модуля (приложение Б).

4.3 Организация изучения учебного модуля

Методические рекомендации по организации изучения учебного модуля с учётом использования в учебном процессе активных и интерактивных форм проведения учебных занятий даются в Приложении А.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами учебного модуля и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно - рейтинговой системы, являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения модуля используются формы контроля: текущий – регулярно в течение всего семестра и семестровый – по окончании изучения учебного модуля.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с положением от 25.03.2014 Протокол УС № 18 «Об организации учебного процесса по образовательным программам высшего образования».

Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение Б).

6 Учебно-методическое и информационное обеспечение учебного модуля представлено картой учебно-методического обеспечения (Приложение В)

7 Материально-техническое обеспечение учебного модуля

Для проведения учебного модуля на кафедре имеется специальная аудитория с возможностью выполнять лабораторные работы по всем разделам модуля. Кроме того, имеется препараторская для предварительной подготовки эксперимента, а также учебная мастерская, позволяющая осуществлять ремонт демонстрационного оборудования. При проведении занятий используется компьютеры и электронный проектор с необходимым для удобного восприятия демонстраций экраном. Кроме того, на кафедре имеется необходимое оборудование ДЛЯ постановки всех демонстраций в соответствии требованиями учебного процесса по модулю «Физика». Модуль обеспечен необходимым количеством плакатов, выпущенных по предмету в соответствии с содержанием учебных курсов физики. Студентам обеспечивается доступ к электронной копировальной технике, создаются условия для оптимального фотографирования и размножения учебных материалов.

Приложения (обязательные):

- А Методические рекомендации по организации изучения учебного модуля
 - Б Технологическая карта
 - В Карта учебно-методического обеспечения УМ

Приложение А

Методические рекомендации по организации изучения учебного модуля «Физика»

Учебный модуль «Физика» реализуется с помощью лекций, практических занятий, лабораторных занятий, аудиторной самостоятельной работы студента и внеаудиторной самостоятельной работы студента. При этом предусмотрены лекции по следующим темам:

Темы лекционных занятий (форма обучения – очная):

- ЛК1 Кинематика материальной точки. Перемещение. Скорость. Ускорение. Нормальное и тангенциальное ускорение. Угловая скорость и угловое ускорение. Связь линейных и угловых характеристик.
- ЛК2 Динамика материальной точки. Сила и масса. Законы Ньютона. Принцип суперпозиции сил
- ЛКЗ Меры движения и меры действия сил. Законы сохранения в механике.
 Основные теоремы механики.
- ЛК4 Основные положения молекулярно кинетической теории строения вещества и их опытное обоснование
- ЛК5 Газовые законы. Уравнение Менделеева Клапейрона. Теплота. Работа. Внутренняя энергия.
- ЛК6 Первое и второе начало термодинамики. Тепловые двигатели и их коэффициент полезного действия.
- ЛК7 Основные понятия и законы электростатики. Закон Кулона. Напряжённость и потенциал. Принцип суперпозиции.
- ЛК8 Законы постоянного тока. Закон Ома. Закон Джоуля Ленца. Правила Кирхгофа.
- ЛК9 Магнитное поле. Закон Ампера. Сила Лоренца. Явление электромагнитной индукции.
- ЛК10 Электромагнитные волны. Уравнения Максвелла
- ЛК11 Основные законы геометрической и волновой оптики. Интерференция и дифракция света.
- ЛК12 Основы квантовой оптики. Тепловое излучение и фотоэффект.
- ЛК13 Модели строения атома. Боровская теория водородоподобного атома
- ЛК14 Строение ядра. Ядерные реакции. Радиоактивность.

Темы лекционных занятий (форма обучения – очно - заочная):

- ЛК1 Кинематика материальной точки. Перемещение. Скорость. Ускорение. Нормальное и тангенциальное ускорение. Угловая скорость и угловое ускорение. Связь линейных и угловых характеристик.
- ЛК2 Динамика материальной точки. Сила и масса. Законы Ньютона. Принцип суперпозиции сил. Меры движения и меры действия сил. Законы сохранения в механике. Основные теоремы механики.
- ЛКЗ Основные положения молекулярно кинетической теории строения вещества и их опытное обоснование. Газовые законы. Уравнение Менделеева —

Клапейрона. Теплота. Работа. Внутренняя энергия. Первое и второе начало термодинамики. Тепловые двигатели и их коэффициент полезного действия.

- ЛК4 Основные понятия и законы электростатики. Закон Кулона. Напряжённость и потенциал. Принцип суперпозиции. Законы постоянного тока. Закон Ома. Закон Джоуля Ленца. Правила Кирхгофа.
- ЛК5 Магнитное поле. Закон Ампера. Сила Лоренца. Явление электромагнитной индукции.
- ЛК6 Электромагнитные волны. Уравнения Максвелла. Основные законы геометрической и волновой оптики. Интерференция и дифракция света.
- ЛК7 Основы квантовой оптики. Тепловое излучение, законы теплового излучения и фотоэффект.
- ЛК8 Модели строения атома. Боровская теория водородоподобного атома. Многоэлектронные атомы и периодическая система элементов Менделеева.
- ЛК9 Строение ядра. Ядерные реакции. Радиоактивность.

Лекции проводятся не только в классической форме, но используются компьютерные материалы, методические материалы с активным обсуждением содержания материалов студентами.

Практические занятия направлены на изучение материала, главным содержанием которого является решение задач. Поэтому практические задачи не только способствуют изучению лекционного материала, но и направлены на изучение нового более конкретного материала.

При этом предусмотрены следующие темы практических занятий:

Темы практических занятий (форма обучения – очная):

- ПР1 Равномерное и равнопеременное движение. Вращательное движение точки. Нормальное и тангенциальное ускорения.
- ПР2 Движение тела под действием нескольких сил. Наклонная плоскость.
- ПРЗ Применение первого и второго начала термодинамики к процессам в идеальных газах.
- ПР4 Решение задач по электростатике. Напряжённость и потенциал.
- ПР5 Расчёт электрических цепей постоянного и переменного тока.
- ПР6 Интерференция и дифракция света. Кольца Ньютона.
- ПР7 Законы теплового излучения. Фотоэффект.
- ПР8 Расчёт спектров излучения и поглощения атомов водорода.
- ПР9 Строение ядра. Ядерные реакции. Основной закон радиоактивного распада.

Примечание: Задачи с подробными решениями изложены в пособиях:

1. Методические рекомендации к практическим занятиям по курсу общей физики для студентов для студентов физико-математических и инженерных специальностей. Учебно-методический комплекс для студентов физико-математических и инженерных направлений и специальностей. /Сост. Н.П. Самолюк: НовГУ им. Ярослава Мудрого. – Новгород, 2016. – 68 с. (Пособие имеется на кафедре и размещено в

- Документах кафедры на Интернет странице Новгородского университета)
- 2. Методические рекомендации для самостоятельной работы студентов при решении задач по физике. /Сост. Н.П. Самолюк: НовГУ им. Ярослава Мудрого. Новгород, 2016. 34 с. (Пособие имеется на кафедре и размещено в Документах кафедры на Интернет странице Новгородского университета),
- 3. Трофимова Т.И. Курс физики. Задачи и решения: Учеб.пособие для вузов. М.: Академия, 2004. 590 с.
- 4. Трофимова Т.И. Сборник задач по курсу физики с решениями: Учеб.пособие для вузов. 9-е изд., стер. М.: Высшая школа, 2008. 589с.
- 5. Фирганг Е.В. Руководство к решению задач по курсу общей физике: Учеб.пособие для втузов. 3-е изд., стер. СПб.: Лань, 2008. 347 с.
- 6. Чертов А. Г., Воробьёв А. А. Задачник по физике любое издание.
- 7. Волькенштейн В. С. Сборник задач по общему курсу физики любое издание.

Лабораторные работы (форма обучения – очная)

№ раздела УМ	Наименование лабораторных работ	Трудоёмкость, ак. час
1.1	Измерение физических величин и классификация их погрешностей	2
1.2	Исследование законов вращательного движения на маятнике Обербека	2
1.3	Определение отношения молярных теплоёмкостей газов в процессах при постоянном давлении и при постоянном объёме	2
2.1	Измерение сопротивлений проводников методом мостиковой схемы	2
2.2	Исследование электрической цепи постоянного тока	2
2.3	Определение горизонтальной составляющей напряжённости магнитного поля Земли	2
3.1	Кольца Ньютона	2
3.2	Определение длины световой волны при помощи дифракционной решётки	2
3.3	Изучение спектра излучения атома водорода и определение постоянной Ридберга	2

Лабораторные работы (форма обучения – очно-заочная)

№ раздела УМ	Наименование лабораторных работ	Трудоёмкость, ак. час
1.1	Измерение физических величин и классификация их погрешностей	2
1.2	Определение отношения молярных теплоёмкостей газов в процессах при постоянном давлении и при постоянном объёме	2
2.1	Исследование электрической цепи постоянного тока	2
2.2	Определение горизонтальной составляющей напряжённости магнитного поля Земли	2
3.1	Определение длины световой волны при помощи дифракционной решётки	2
3.2	Изучение спектра излучения атома водорода и определение постоянной Ридберга	2

Примечание: в зависимости от состояния лабораторного оборудования, студентам могут быть предложены другие темы работ с аналогичным содержанием.

Кроме лекционных, практических занятий и лабораторных работ по модулю предусмотрена аудиторная самостоятельная работа студентов.

Самостоятельная работа студентов состоит в изучении студентами учебного материала лекционного курса физики. В процессе самостоятельной работы студенты систематизируют материалы аудиторных занятий и дополняют их материалами из методических рекомендаций для студентов.

В самостоятельную работу студента входит также подготовка единой по всему модулю домашней контрольной работы, а также подготовка к коллоквиумам и зачёту.

Для подготовки к лабораторным работам, контрольной работе, коллоквиумам рекомендуется пользоваться основной и дополнительной учебно-методической литературой, представленной в таблице 1 карты учебнометодического обеспечения.

Ниже приведён список вопросов (тем) для самопроверки и подготовки к коллоквиумам.

Коллок	свиум 1
1	Кинематика материальной точки
2	Кинематика вращательного движения
3	Закон инерции – 1-й закон Ньютона
4	Основной закон динамики – второй закон Ньютона
5	Закон сохранения импульса. Центр масс

6	Работа и мощность
	Кинетическая энергия. Потенциальная энергия. Закон сохранения энергии в
7	механике
8	Момент импульса. Закон сохранения момента импульса
9	Вращение твёрдого тела вокруг неподвижной оси. Теорема Штейнера
	Основные понятия термодинамики. Внутренняя энергия Работа и теплота Первый
10	закон термодинамики
11	Теплоёмкость
12	Применение первого начала термодинамики к изопроцессам
13	Адиабатический процесс
14	Цикл Карно
15	Энтропия. Неравенство Клаузиуса
16	Второй закон термодинамики
Коллок	
1	Основное уравнение молекулярно-кинетической теории
2	Распределение Максвелла
3	Барометрическая формула. Распределения Больцмана и Максвелла-Больцмана
4	Статистическое толкование энтропии
5	Классическая теория теплоёмкости газов
6	Средняя длина свободного пробега молекул газа. Явления переноса в газах
0	Электромагнитное поле и его свойства. Взаимодействие точечных зарядов. Закон
7	Улектромагнитное поле и его своиства. Взаимодеиствие точечных зарядов. Закон Кулона
8	Напряжённость электрического поля. Принцип суперпозиции. Теорема Гаусса
9	Разность потенциалов. Электрический потенциал
10	
11	Связь между напряжённостью и разностью потенциалов электрического поля Электрический диполь
11	Диэлектрик в электрическом поле. Вектор поляризации диэлектрика. Вектор
12	электрического смещения
13	
14	Граничные условия для поверхности раздела двух диэлектриков Проводник в электрическом поле. Электроёмкость. Конденсаторы
14	Энергия системы точечных зарядов. Энергия конденсатора. Энергия
15	элергия системы точечных зарядов. энергия конденсатора. энергия электрического поля
Коллок	
1	Сила тока. Плотность электрического тока
1	Классическая теория электропроводности. Закон Ома для однородного участка
2	цепи
3	Закон Ома для неоднородного участка цепи. Электродвижущая сила
4	Работа и мощность тока. Закон Джоуля-Ленца
	Магнитное поле. Вектор индукции магнитного поля. Магнитное поле равномерно
5	движущегося заряда
	Закон Био – Савара – Лапласа. Магнитное поле прямолинейного проводника с
6	током и кругового витка с током
	Закон Ампера. Сила Ампера. Взаимодействие двух проводников с электрическим
7	током. Единица силы тока – Ампер
_	Основные законы магнитного поля стационарных токов Магнитное поле
8	соленоида и тороида
_	Контур с током в магнитном поле. Работа по перемещению контура с током в
9	магнитном поле
	Намагничивание вещества. Намагниченность. Циркуляция вектор
10	намагниченности. Вектор напряжённости магнитного поля
11	Условия для магнитного поля на границе раздела двух сред
12	Атом в магнитном поле. Диамагнетики. Парамагнетики
13	Ферромагнетики и их свойства
13	T OPPOSIMI HOTHER IT HE ODOHOTHE

_	
14	Явление электромагнитной индукции. Явление самоиндукции. Индуктивность.
14	Явление взаимной индукции
15	Энергия магнитного поля
16	Ток смещения. Уравнения Максвелла
17	Колебания и их описание. Дифференциальное уравнение колебаний. Энергия
1 /	гармонических колебаний
18	Затухающие колебания. Вынужденные колебания. Резонанс
19	Волновые процессы и их характеристики. Волновое уравнение
20	Волновое уравнение для электромагнитных волн. Свойства электромагнитных
20	волн
21	Энергия и импульс электромагнитных волн. Излучение электромагнитных волн.
21	Шкала электромагнитных волн
22	Свет и его характеристики. Интерференция световых волн. Когерентность
23	Методы наблюдения интерференции света. Некоторые классические опыты
23	наблюдения интерференции света
24	Дифракция света. Принцип Гюйгенса – Френеля. Дифракция света на щели.
Z 4	Дифракционная решётка
25	Поляризация света. Поляризация при отражении и преломлении, двойном
23	лучепреломлении. Вращение плоскости поляризации
26	Дисперсия света. Поглощение света
27	Равновесное тепловое излучение Закон Кирхгофа Формула Релея – Джинса
21	Законы Стефана-Больцмана и Вина
28	Формула Планка. Корпускулярные свойства света
29	Гипотеза де Бройля. Волны де Бройля
30	Теория водородоподобного атома по Бору

Задания на зачёт по модулю «Физика»

Зачёт по модулю «Физика» проводится по результатам текущей работы. На зачёт студенты должны представить все конспекты аудиторных занятий и домашнюю контрольную работу. На зачёте студенты защищают результаты своей домашней контрольной работы. При наличии положительных результатов по всем коллоквиумам, успешной защите домашней контрольной работы и выполнении и защите всех предусмотренных графиком лабораторных работ студенты получают оценку «зачтено».

Приложение Б

Технологическая карта учебного модуля «Физика» (форма обучения – очная) семестр - 2, ЗЕТ - 3, вид аттестации - зачёт, акад. часов - 108, баллов рейтинга – 150

					ть, ак. час			
		A	удито	рные за	киткн		o (B) (C)	ГВС
№ и наименование раздела учебного модуля, КП/КР	№ недели сем.	Лекции	Практические	Лабораторные работы	Аудиторная самостоятельная работа студентов	Самостоятельная работа студентов	Форма текущего контроля успев. (соответствии с паспортом ФОС)	Максим. количество баллов рейтинга
УЭМ 1 Механика, молекулярная физика и термодинамика	1-6	9	3	6	3	18		50
1.1. Кинематика и динамика материальной точки;	1-2	3	1	2	1	6	Лаб. работа	15
1.2. Законы сохранения в механике. Первое начало термодинамики;	3-4	3	1	2	1	6	Коллоквиум	20
1.3. Уравнение состояния газов. Газовые законы. Закон Дальтона.	5-6	3	1	2	1	6	Лаб. Работа	15
УЭМ 2 Электромагнетизм и волновая и квантовая оптика	7 -12	9	3	6	3	18		50
2.1. Основные понятия и законы электростатики;	7 - 8	3	1	2	1	6	Лаб. Работа	15
2.2. Постоянный и переменный электрический ток;	9 -10	3	1	2	1	6	Коллоквиум	20
2.3. Основные понятия и законы волновой и квантовой оптики.	11 -12	3	1	2	1	6	Лаб. Работа	15
УЭМ 3 Строение атома. Атомное ядро. Радиоактивность	13 - 18	9	3	6	3	18		50
3.1. Модели строения атома. Постулаты Бора. Боровская теория водородоподобного атома;	13 -14	3	1	2	1	6	Лаб. работа	15
3.2. Строение ядра атома. Энергия связи ядер.	15 - 16	3	1	2	1	6	Коллоквиум	20
3.3. Радиоактивность. Основной закон радиоактивного распада.	17 - 18	3	1	2	1	6	Дом. контр. работа	15
Аттестация – зачёт (по результатам текущего контроля)	-	-	-	-	-	-	-	-
Итого:	1 -18	27	9	18	9	54	-	150

Технологическая карта учебного модуля «Физика» (форма обучения – очно-заочная) семестр - 2, ЗЕТ - 3, вид аттестации - зачёт, акад. часов - 108, баллов рейтинга – 150

		Трудо	ёмкость,	ак. час		
		Аудит	-	_ ~	го . (В С)	TBO
	сем.	занятия		ная	цеі св. 1И (чес
№ и наименование раздела учебного модуля, КП/КР	№ недели с	Лекции	Лабораторные работы	Самостоятельная работа студентов	Форма текущего контроля успев. (а соответствии с паспортом ФОС)	Максим. количество баллов рейтинга
УЭМ 1 Механика, молекулярная физика и термодинамика	1-6	6	4	26		50
1.1. Кинематика и динамика материальной точки. Законы сохранения в механике.	1-3	3	2	12	Лаб. работа	20
1.2. Первое начало термодинамики. Уравнение состояния газов. Газовые законы. Закон Дальтона.	4-6	3	2	14	Коллоквиум	30
УЭМ 2 Электромагнетизм и волновая и квантовая оптика	7 -12	6	4	26		50
2.1. Основные понятия и законы электростатики. Постоянный и переменный электрический ток. Электромагнетизм.	7 – 9	3	2	12	Лаб. Работа	20
2.2. Основные понятия и законы волновой и квантовой оптики.	10 -12	3	2	14	Коллоквиум	30
УЭМ 3 Строение атома. Атомное ядро. Радиоактивность	13 - 18	6	4	26		50
3.1. Модели строения атома. Постулаты Бора. Боровская теория водородоподобного атома.	13 -14	2	2	8	Лаб. работа	10
3.2. Строение ядра атома. Энергия связи ядер.	15 - 16	2	2	10	Коллоквиум	30
3.3. Радиоактивность. Основной закон радиоактивного распада.	17 - 18	2	-	8	Дом. контр. работа	10
Аттестация – зачёт (по результатам текущего контроля)	-	-	-	-	-	-
Итого:	1 -18	18	12	78	-	150

В соответствии с Положением «Об организации учебного процесса по образовательным программам высшего образования»

перевод баллов рейтинга в традиционную систему оценок осуществляется по шкале:

- менее 75 баллов не зачтено
- 75 150 баллов зачтено

Приложение В Карта учебно-методического обеспечения Физика

Учебный модуль по направлениям подготовки:

06.03.01 – Биология ПРОФ. Биохимия; **05.03.06** – Экология и

природопользование; **05.03.02** – География. ПРОФ. Рекреационная география и туризм **(форма обучения – очная).**

Курс — 1; Семестр — 2; Часов: всего - 108, лекций — 27, практ. зан. - 9, лаб. раб. - 18, СРС - 54

06.03.01 – Биология ПРОФ. Биохимия (форма обучения – очно-заочная).

Курс — 1; Семестр — 2; Часов: всего - 108, лекций — 18, практ. зан. - 0, лаб. раб. - 12, СРС - 78

Обеспечивающая кафедра – кафедра общей и экспериментальной физики

Таблица 1- Обеспечение учебного модуля учебными изданиями

1аолица 1- Ооеспечение учеоного модуля учеоными изданиями		
Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС и в Интернете, и на кафедре
Учебники и учебные пособия		
1. Грабовский, Р. И. Курс физики 7-е изд., стер СПб.: Лань, 2004 607с.: ил.	12	
2 Грабовский, Р. И. Курс физики 9-е изд., стер СПб.: Лань, 2006 607с.: ил.	50	-
3 Грабовский, Р. И. Курс физики: учеб. пособие для вузов 10-е изд., стер СПб.: Лань, 2007 607с.: ил.	10	-
4 Детлаф, А. А. Курс физики: учеб. пособие для студентов втузов / А. А. Детлаф, Б. М. Яворский 3-е изд., испр М.: Высшая школа, 2001 717, [1] с.: ил.	39	-
5 Детлаф, А. А. Курс физики: учеб. пособие для вузов 5-е изд., стер М.: Академия, 2005 719, [1] с.: ил.	50	-
6 Детлаф, А. А. Курс физики: учеб. пособие для техн. вузов / А. А. Детлаф, Б. М. Яворский 10-е изд., стер М.: Академия, 2015 719, [1] с.: ил.	30	-
7 Дмитриева, В.Ф. Основы физики: учеб. пособие для вузов 3-е изд., испр. и доп М.: Высшая школа, 2003 526, [2] с.: ил.	1	-

Учебно-методические издания		
Рабочая программа по модулю «Физика». Для направлений подготовки 06.03.01 — Биология ПРОФ. Биохимия 05.03.06 — Экология и природопользование 05.03.02 — География. ПРОФ. Рекреационная география и туризм/Сост. С. А. Сабельников, - Великий Новгород, НовГУ, 2018. — 19 с.	1	Имеется на кафедре ОЭФ
1. Изучение рентгеновской аппаратуры [Электронный ресурс]. Получение рентгеновских лучей: метод. указания к лаб. работе / сост. А. Н. Буйлов; Новгород. гос. ун-т им. Ярослава Мудрого Великий Новгород, 2004 25с. — режим доступа: URL: WWW: https://novsu.bibliotech.ru.	10	
2. Контрольные задания по курсу общей физики [Электронный ресурс] / сост.: А. М. Бобков, Ф. А. Груздев; Новгород. гос. ун-т им. Ярослава Мудрого Великий Новгород, 2010 91, [1] с.: ил. – режим доступа: URL: WWW: https://novsu.bibliotech.ru.	152	
4. Лабораторный практикум по молекулярной физике и термодинамике. Ч. 2 [Электронный ресурс] / сост. Т. П. Смирнова, Л. А. Евдокимова; Новгород. гос. ун-т им. Ярослава Мудрого Великий Новгород, 2000 101 с.: ил. – режим доступа: URL: WWW: https://novsu.bibliotech.ru.	21	
5. Лабораторный практикум по молекулярной физике и термодинамике. Ч. 1 [Электронный ресурс] / сост. Т. П. Смирнова, Л. А. Евдокимова; Новгород. гос. ун-т им. Ярослава Мудрого Великий Новгород, 2000 79 с.: ил. – режим доступа: URL: WWW: https://novsu.bibliotech.ru.	21	
6. Общая физика: контрольные задания [Электронный ресурс] / сост. А. М. Бобков, Ф. А. Груздев; Новгород. гос. ун-т им. Ярослава Мудрого Великий Новгород, 2004 67 с. – режим доступа: URL: WWW: https://novsu.bibliotech.ru.	762	
7. Сборник лабораторных работ по общему курсу физики: в 2 ч. Ч. 1 [Электронный ресурс] / сост.: Е. А. Ариас [и др.]; Новгород. гос. ун-т им. Ярослава Мудрого 2-е изд Великий Новгород, 2009 103, [1] с.: ил. – режим доступа: URL: WWW: https://novsu.bibliotech.ru.	188	
8. Сборник лабораторных работ по общему курсу физики: в 2 ч. Ч. 2 [Электронный ресурс] / сост.: Е. А. Ариас [и др.]; Новгород. гос. ун-т им. Ярослава Мудрого 2-е изд Великий Новгород, 2009 81, [1] с.: ил. — режим доступа: URL: WWW: https://novsu.bibliotech.ru.	170	

Таблица 2 – Информационное обеспечение учебного модуля

Название программного продукта, Интернет- ресурса	Электронный адрес	Приме чание
Образовательные стандарты. Приказы Министерства образования и науки по преподаванию дисциплин в школе и в вузе	http://www.ed.gov.ru/d/obedu/noc/rub/standart/mp/13.doc	
ФИЗИКОН – разработка образовательных программ	http://www.physicon.ru	
Центр образовательного законодательства	http://www.lexed.ru/standart/02/02/14.html	
Дистанционное образование	http://www.eidos.ru	
Единое окно доступа к образовательным ресурсам	http://www.school.edu.ru	

Таблица 3 — Дополнительная литература

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.) 1. Трофимова, Т. И.	Кол. экз. в библ. НовГУ	Наличие в ЭБС и в Интернете, и на кафедре
Краткий курс физики с примерами решения задач: учеб. пособие для вузов / Т. И. Трофимова 2-е изд., стер М.: Кнорус, 2011 279 с.: ил.	1	-
2. Трофимова, Т. И. Курс физики с примерами решения задач: учеб. для вузов: в 2 т. Т. 1: Механика. Молекулярная физика. Термодинамика. Электродинамика / Т. И. Трофимова, А. В. Фирсов М.: Кнорус, 2010 577 с.: ил.	1	-
3. Трофимова, Т. И. Курс физики с примерами решения задач: учеб. для вузов: в 2 т. Т. 2: Оптика. Квантовая физика. Законы сохранения / Т. И. Трофимова, А. В. Фирсов М.: Кнорус, 2010 378 с.: ил.	1	- 2
3. Трофимова, Т. И. Краткий курс физики с примерами решения задач: учеб. пособие для вузов / Т. И. Трофимова 3-е изд., стер М.: Кнорус, 2013 279 с.: ил.	1	-
4. Трофимова, Т. И. Курс физики: учеб. пособие для вузов 17-е изд., стер М.: Академия, 2008 557, [2] с.: ил.	20	-
5. Трофимова, Т. И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов 9-е изд., стер М.: Высшая школа, 2008 589, [3] с.: ил.	28	-

Действительно,	для учебного год	рда/	
Зав. кафедрой _	лодпись	В. В. Гаврушко И. О. Фамилия	
18	09	_ 20. <i>1.8.</i> r.	
СОГЛАСОВАН	Ю	Новгородский госудавственный университет им. Яровлава Мудрого Научная библиетска	
НБ НовГУ:	о. Биебе, должность	подпись расшифровка	