Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра Общей и экспериментальной физики

ФИЗИКА

Учебный модуль по направлению подготовки 08.03.01- Строительство

Рабочая программа

СОГЛАСОВАНО	
Начальник учебно	го отдела
least O.B.II	Іироколобова
(34) 10	2017 г.

Заведующий выпускающей кафедровск

А.С.Вареник 2017 г.

Заведующий выпускающей /кафедрой СП

3.М.Хузин 5 10 2017 г.

Разработали

Старший преподаватель

Принято на заседании кафедры ОиЭФ Протокол № 1 от 06.09 2017 г.

Заведующий кафедрой ОиЭФ

В.В.Гаврушко 25 » онтябро 2017 г.

1 Цели и задачи учебного модуля

Физика создает универсальную базу для изучения общепрофессиональных и специальных дисциплин, закладывает фундамент последующего обучения в магистратуре, аспирантуре.

Целями учебного модуля (УМ) «Физика» являются:

- Изучение фундаментальных физических законов, теорий, методов классической и современной физики;
 - Формирование научного мировоззрения;
- Формирование навыков владения основными приемами и методами решения прикладных проблем.
- Формирование навыков проведения научных исследований, ознакомление с современной научной аппаратурой;
- Ознакомление с историей физики и её развитием, а также с основными направлениями и тенденциями развития современной физики.

Задачи, решение которых обеспечивает достижение цели:

- формирование у студентов системы теоретических знаний в области физики;
- актуализация способности студентов использовать теоретические знания при решении задач и проведении экспериментов;
- формирование у студентов понимания значимости знаний и умений по дисциплине при работе по специальности;
- стимулирование студентов к самостоятельной деятельности по освоению дисциплины и формированию необходимых компетенций.

2 Место учебного модуля в структуре ООП направления подготовки

В соответствии с ФГОС по направлению 08.03.01— Строительство учебный модуль «Физика» относится к базовой части учебного плана. На освоение УМ выделено 6 зачетных единиц. Это составляет 216 часов.

При изучения УМ используются знания по физике, полученные на предыдущем уровне образования (в общеобразовательной школе, колледже и т.п.) Кроме того, используются знания по высшей математике, которая изучается параллельно с освоением этого модуля в соответствии с образовательным стандартом.

Знания, полученные по изучении данного учебного модуля, будут использованы при изучении технических УМ: «Теоретическая механика», «Гидравлика», «Сопротивление материалов», «Электротехника и электроника» и других.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование следующих компетенций:

- ОК-7 способностью к самоорганизации и самообразованию
- ОПК-2 Способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответ-ствующий физико-математический аппарат

Результаты освоения учебного модуля

– ОК-7 способностью к самоорганизации и самообразованию;

Vnoporu	Показатели	Оценочная шкала			
Уровень		3	4	5	
Базовый	Умеет критически оценивать достоинства недостатки, а также сильные и слабые стороны своей профессиональной деятельности	Недооценивает ироли критической оценки достоинств и недостатков, сильных и слабых сторон своей профессиональной деятельности	Готов к критической оценке достоинств и недостатков, сильных и слабых сторон своей профессиональной деятельности	Демонстрирует умение критической оценки достоинств и недостатков, сильных и слабых сторон своей профессиональной деятельности	
	Умеет консультировать и прививать навыки работникам по аспектам своей профессиональной деятельности	Недооценивает важности роли консультаций и совершенствовани ю навыков работников в своей профессионально й деятельности	Осознает важность роли консультаций и совершенствовани я навыков работников в своей профессионально й деятельности	Демонстрирует умение консультировать и прививать навыки работникам по аспектам своей профессиональной деятельности	

– ОПК-2 Способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответ-ствующий физико-математический аппарат

Vacanti	Показатели	Оценочная шкала			
Уровень		3	4	5	
Базовый	Способность осуществлять самоконтроль и самокоррекцию при использовании физикоматематического аппарата	Способен к самоконтролю, но испытывает сложности в процессе самокоррекции	Способен к самоконтролю, не испы-тывает сложности в процессе самокоррекции	Критически оценивает свои навыки в использовании физикоматематического ап парата и вносит необходимые изменения	
	Умение преобразовывать информацию, осуществлять информационную переработку математических данных	Способен к частичному преобразова-нию математических данных, но не способен к информационной переработке математических данных для устного или письменного сообщения	Умеет преобразовывать информацию, осуществлять информационную пере-работку математических данных	Способен к переработке информации с учетом выбора темы, легко адаптирует слож-ную для понимания профессиональную информацию	
	Способность к выбору наиболее эффективных математических методов и уме-ние использовать выбранные методы для решения проблем, возникающих в ходе профессиональной деятельности	Испытывает сложности с подбором математических методов	Способен совершить аргументированный выбор математического метода в зависимости от исходных данных	Демонстрирует способность выбрать наи-более эффективный из математических методов в зависимости от исходных дан-ных	

Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

Табл.1 Трудоемкость учебного модуля по видам учебной работы и по семестрам по направлению 08.03.01— Строительство

Учебная работа (УР)		Распределение по семестрам		Коды формируемых
			2	компетенций
Трудоемкость модуля в зачетных единицах (ЗЕТ)	6		6	
Распределение трудоемкости по видам УР в академических часах (АЧ):	216		216	
- лекции	36		36	
- практические занятия (семинары)	18		18	ОК-7,
- лабораторные работы	36		36	ОПК-2
- аудиторная СРС	18		18	
- внеаудиторная СРС	90		90	
Аттестация:	36			
- зачёт*				
- экзамен	36		36	

^{*)} зачеты принимаются в часы аудиторной СРС.

4.2 Содержание и структура разделов учебного модуля

Учебный модуль построен по «горизонтальной» схеме, где все составляющие модуля вносят приблизительно равный и относительно независимый вклад в образовательный результат. Это позволяет обеспечить системный подход к построению курса, определению его содержания и эффективный контроль усвоения знаний студентов. Каждый раздел модуля состоит из лекций, практических занятий, лабораторных работ, аудиторной самостоятельной работы студентов и внеаудиторной самостоятельной работы студентов. Внеаудиторная СРС включает в себя подготовку к текущим практическим занятиям и лабораторным работам. Результаты этой подготовки проявляются:

- в активности студента на практических занятиях, при выполнении лабораторных работ;
- в качественном уровне подготовленных заданий.

Аудиторная СРС (выполнение дополнительных индивидуальных и групповых заданий, как обязательных, так и по выбору) направлена на самостоятельный поиск различных вариантов решения задач и объяснений результатов экспериментов, проводимых в ходе лабораторных работ, углубление и закрепление знаний по теории физических явлений. Результаты этой формы самостоятельной подготовки оцениваются индивидуальных консультаций с преподавателем, которые могут быть дистанционными с использованием средств современных телекоммуникаций. Баллы за специальную самостоятельную подготовку также учитываются при итоговой аттестации по курсу.

Учебный модуль состоит из следующих разделов:

Табл. 3 Разделы учебного модуля и их содержание

1. Механика

- 1.1. Измерение физических величин. Погрешности измерений.
- 1.2. Кинематика материальной точки.
- 1.3. Динамика материальной точки и твердого тела. Силы в механике.
- 1.4. Законы сохранения в механике.
- 1.5. Динамика вращательного движения
- 1.6. Колебания. Кинематика и динамика гармонических колебаний

2. Молекулярная физика и термодинамика

- 2.1. Идеальный газ. Внутренняя энергия идеального газа.
- 2.2. Основное уравнение мол.-кинетической теории идеального газа
- 2.3. Первое начало термодинамики
- 2.4. Второе начало термодинамики. Тепловые двигатели
- 2.5. Явления переноса.

3. Электростатика

3.1. Электрический заряд. Напряженность электростатического поля.

Теорема Гаусса

- 3.2. Работа и потенциал электростатического поля
- 3.3. Проводники в электростатическом поле Электроемкость. Конденсаторы.
- 3.4. Энергия электростатического поля

4. Постоянный электрический ток

- 4.1. Постоянный электрический ток. Законы Ома. Действия тока.
- 4.2. Разветвленные цепи. Правила Кирхгофа

5. Магнитное поле

- 5.1. Магнитное действие тока. Закон Био-Савара-Лапласа.
- 5.2. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле.

6. Электромагнитная индукция.

- 6.1. Магнитный поток. Явление электромагнитной индукции
- 6.2. Самоиндукция. Взаимная индукция. Индуктивность. Энергия магнитного поля

- 6.3. Принцип действия генератора и электродвигателя.
- 6.4. Уравнения Максвелла.
- 7. Геометрическая и волновая оптика
- 7.1 Геометрическая оптика
- 7.2. Световые волны. Интерференция света
- 7.3. Дифракция света
- 7.4. Поляризация света
- 7.5. Дисперсия света
- 8. Квантовые свойства света. Строение атома и атомного ядра
- 8.1. Тепловое излучение и его законы
- 8.2. Фотоэффект и его законы
- 8.3 Модели строения атома.
- 8.4. Рентгеновское излучение. Тормозное рентгеновское излучение. Характеристическое рентгеновское излучение.
- 8.5 Строение атомного ядра. Ядерные силы. . Элементарные частицы

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте учебного модуля (приложение В).

4.3 Лабораторный практикум

Табл. 4 Перечень лабораторных работ

Студент должен выполнить 10 лабораторных работ общей трудоемкостью 36 часов из предложенного списка по индивидуальному графику.

Номер раздела УМ	Наименование лабораторных работ	Трудоёмкость, ак.час
1.1	Измерение физических величин	3
1.2	Определение моментов инерции твердых тел методом крутильных колебаний	3
1.3	Исследование законов вращательного движения на маятнике Обербека	3
1.4	Изучение соударения шаров	3
1.5	Определение скорости полета пули с помощью крутильно-баллистического маятника	3
2.1	Определение отношения молярных теплоемкостей в процессах при постоянном давлении и при постоянном объеме для идеальных газов.	3
2.2	Определение коэффициента вязкости воздуха, средней длины свободного пробега и эффективного диаметра молекул воздуха	3
2.3	Определение коэффициента вязкости жидкости с помощью вискозиметра либо Определение коэффициента вязкости жидкости методом Стокса	3
3.1	Исследование электростатического поля	3
3.2	Определение емкости конденсаторов	3
4.1	Исследование цепи постоянного тока	3
4.2	Измерение сопротивлений методом мостиковой	3

	схемы	
4.3	Измерение ЭДС источника методом компенсации	3
5.1	Определение горизонтальной составляющей напряженности магнитного поля Земли	3
5.2	Определение удельного заряда электрона при помощи магнетрона	4
5.3	Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа	4
6.1	Определение коэффициента взаимной индукции 2-х соленоидов	4
7.1	Определение фокусного расстояния линз	3
7.2	Определение длины световой волны при помощи	3
	интерференционных колец	
7.3	Определение длины волны света с помощью бипризмы Френеля	3
7.4	Определение длины волны света с помощью дифракционной решетки	3
7.5	Исследование явления поляризации.	3
8.1	Определение суммарного коэффициента поглощения тепла оптическим пирометром	4
8.2	Исследование вакуумного и газонаполненного фотоэлемента	4

4.4 Организация изучения учебного модуля

8.3

Методические рекомендации по организации изучения УМ с учетом использования в учебном процессе активных и интерактивных форм проведения учебных занятий даются в Приложении А.

Исследование спектра испускания водорода и

4

5 Контроль и оценка качества освоения учебного модуля

определение постоянной Ридберга

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения дисциплины используются следующие формы контроля:

- текущий (в течение всего семестра): оценка работы на практических занятиях, оценка выполнения и защиты лабораторных работ, внеаудиторная самостоятельная работа.
- рубежный на девятой неделе семестра: учет суммарных результатов по итогам текущего контроля за соответствующий период и результатов контрольных работ;
- семестровый: по окончании изучения учебного модуля- экзамен.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с положением от 2 с положением от 25.03.2014 Протокол УС № 18 «Об организации учебного процесса по образовательным программам высшего образования». В качестве

оценочных средств на протяжении семестра используются разноуровневые задачи, лабораторные работы, контрольные работы, экзамен.

Критерии оценивания представлены в следующей таблице.

Табл. 4 Критерии оценки

Табл. 4 Критерии оц	енки ^т	T	
Оценочное	«удовлетворительно»	«хорошо»	«отлично»
средство			
1	2	3	4
Решение разно-	3 балла	4 балла	5 баллов
уровневых задач	- при решении задач	- при решении	- правильно
на одном занятии.	студент не может	задач дает	производит
Максимальное	объяснить	недостаточно	вычисления,
число баллов за	используемый прием	точные объяснения	обнаруживая при
семестр см.	вычислений;	хода решения;	этом знание
приложене В	- допускает 2-3 грубые	- при решении двух	изученного
приложене в	ошибки в расчетах	задач допускает 1	материала
		ошибку в	
		вычислениях	
Выполнение	8-10 баллов	11-13 баллов	14-15 баллов
лабораторной	- не соблюдается	- выполнение	- лабораторная
работы.	техника безопасности;	лабораторной	работа выполнена в
Максимальное	- лабораторные работы	работы	полном объеме;
число баллов за	выполняются не в	удовлетворяет	- соблюдены
семестр см.	соответствии с	основным	требования по
приложене В	графиком выполнения	требованиям к	технике
inplinion on a	ЛР;	ответу на	безопасности;
	- в ходе проведения	«отлично», но	-правильно и
	измерений допускаются	есть недочеты или	аккуратно
	ошибки;	негрубые ошибки,	составлен отчет в
	- отчет составлен не в	не повлиявшие на	соответствии с
	соответствии с	результаты	требованиями СТО
	требованиями СТО	выполнения	1.701-2010.
	1.701-2010;	работы.	-студент грамотно
	- недостаточно хорошо		формулирует ответы;
	использует приобретенные знания		- свободно владеет
	l – , –		
	для формулирования		материалом по изучаемому
	выводов.		разделу
Выполнение	13-16 баллов	17-22 балла	23-25 баллов
контрольной	- работа выполнена в	- работа выполнена	- работа выполнена
работы.	основном верно, но	полностью, но в	полностью;
*	допущены	ней имеются	11001110011100,
Максимальное	существенные	недочеты и	
число баллов за	неточности;	несущественные	
семестр см.	- студент умеет	ошибки;	
приложене В	применять полученные	-в решении задач	
	знания при решении	студент	
	простых задач с	испытывает	
	использованием	небольшие	
	готовых формул, но	трудности в	

	затрудняется при	применении знаний	
	решении более сложных	усвоенных при	
	задач, требующих	изучении других	
	преобразования формул	разделов	
Экзамен	25-37 баллов	38-44 балла	45-50 баллов
	- студент не знает	- студент обладает	- студент обладает
	значительную часть	достаточными	глубокими и
	программного	знаниями	прочными
	материала;	программного	знаниями
	- допустил	материала;	программного
	существенные ошибки в	- два вопроса	материала;
	процессе изложения;	освещены	- при ответе на два
	- не умеет выделить	полностью или	вопроса
	главное;	один вопрос	продемонстрировал
	- приводит ошибочные	освещён	исчерпывающее,
	определения;	полностью, а	последовательное и
	- ни один вопрос не	другой доводится	логически стройное
	рассмотрен до конца,	до логического	изложение
	наводящие вопросы не	завершения при	материала;
	помогают;	наводящих	- задача решена.
	- при решении задачи	вопросах	
	мыслит в правильном	преподавателя;	
	направлении, но	- задача решена	
	допускает ошибку в	верно	
	вычислениях		

Образец варианта контрольной работы:

Контрольная работа №1 Вариант 1

- **1.** Уравнение движения материальной точки вдоль оси x имеет вид $x = A + Bt + Ct^3$, где A = 2 M, B = 7 M/C; C = -0.5 M/ C^3 . Найти координату x, скорость v и ускорение a точки в момент времени τ , равный 2 c.
- **2.** Тележка с песком массой 40 кг движется горизонтально со скоростью 5 м/с. Камень массой 10 кг попадает в песок и движется вместе с тележкой. Найти скорость тележки после попадания камня: a) падающего по вертикали; δ) летящего горизонтально навстречу тележке со скоростью $10 \, \text{м/c}$.
- **3.** Платформа в виде диска массой 120 кг вращается вокруг вертикальной оси с угловой скоростью 4 рад/с. Человек массой 60 кг стоит на краю платформы. Какова будет угловая скорость платформы, если человек переместится в её центр? Момент инерции человека считать как для материальной точки. Трением об ось пренебречь.

Министерство образования и науки РФ ФГБОУ ВПО «Новгородский государственный университет им. Ярослава Мудрого»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Дисциплина <u>«Физика</u>	кафедра <u>О и ЭФ</u>
 Основные понятия кинематики. Дифракция света. Принцип Гюйгенса-Френеля. Задача 	Дифракционная решетка
Завелующий кафелрой О и ЭФ.	В.В.Гаврушко

Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение В).

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено Картой учебно-методического обеспечения (Приложение Г).

7 Материально-техническое обеспечение учебного модуля

Для осуществления образовательного процесса по модулю используется лекционная аудитория, оборудованная мультимедийными средствами и техническими средствами для проведения основных демонстраций, учебные лаборатории по механике, электричеству и магнетизму, по оптике, компьютерный класс с переносным компьютерным проектором и выходом в Интернет.

Приложение А (обязательное)

Методические рекомендации по организации изучения учебного модуля «Физика»

Учебный модуль «**Физика**» состоит из 8 разделов, по которым предусмотрены лекционные, практические и лабораторные занятия.

В таблице Б.1 отражены разделы модуля, технологии и формы проведения занятий, задания по самостоятельной работе студентам и ссылки на дополнительную литературу.

А1. Методические рекомендации по теоретической части учебного модуля

Теоретическая часть модуля направления на формирование системы знаний физики. Теоретические занятия учебного модуля представлены в виде лекций.

Цель лекции — организация целенаправленной познавательной деятельности студентов по овладению программным материалом УМ.

Задачи лекционных занятий — дать связанное, последовательное изложение материала, сообщить студентам основное содержание предмета в целостном, систематизированном виде.

Структура и содержание основных разделов (приведена в рабочей программе учебного модуля, раздел 4.2)

Методы и средства проведения теоретических занятий

При изучении учебного модуля студенты могут посещать лекционные занятия и вести конспекты или самостоятельно прорабатывать по учебникам и дополнительной литературе вопросы, указанные преподавателем. (Список основной литературы приведен в приложении В).

А.2 Методические рекомендации по лабораторному практикуму и практическим занятиям

Цель лабораторного практикума и практических занятий - формирование компетентности студентов в области физики, способствующей становлению их готовности к решению задач профессиональной деятельности.

Задачи занятий - углубление знаний, полученных на теоретических занятиях и применение их в условиях, приближенных к условиям реальной профессиональной деятельности.

Структура и содержание основных разделов лабораторного практикума (приведена в рабочей программе учебного модуля, раздел 4.3)

1. Методические рекомендации по проведению лабораторных работ

При проведении лабораторного практикума студенты самостоятельно выполняют лабораторные работы, получая необходимые консультации у преподавателя. Занятия строятся следующим образом.

Первое занятие:

- проводится инструктаж по технике безопасности:
- студенты разбиваются на группы для выполнения ЛР;
- студенты знакомятся с порядком выполнения, защиты ЛР, правилами оформления отчёта (в соответствии с СТО 1.701-2010. Тестовые документы. Общие правила к построению и оформлению);
- студентам указывается число баллов, которое можно набрать при выполнении лабораторного практикума;
- студенты выполняют первую лабораторную работу.

На втором и последующих занятиях:

- проводится защита выполненной лабораторной работы;
- выполняются последующие лабораторные работы.

Без защиты лабораторных работ допускается выполнить только две работы.

По результатам защит студентам начисляются баллы.

Лабораторный практикум считается выполненным, если студент выполнил и защитил все лабораторные работы. Перечень ЛР приведён в разделе 4.3 настоящей рабочей программы.

Для подготовки и выполнения ЛР по УМ студенты должны методическими указаниями, приведенными в карте учебно-методического обеспечения (Приложение Г, таблица 1)

Методические указания к выполнению ЛР содержат описание установки, используемого оборудования, методику и порядок выполнения лабораторных работ, указания по оформлению отчёта, контрольные вопросы.

2 Методические рекомендации по проведению практических занятий

Проведение практических занятий строится следующим образом:

- 60% аудиторного времени отводится на объяснение решения типовых задач у доски;
- 30% аудиторного времени самостоятельное решение задач студентами
- 10% аудиторного времени разбор ошибок при решении задач (в конце текущего занятия). На каждом практическом занятии по результатам самостоятельной работы могут проставляться баллы.

А.3 Методические рекомендации по самостоятельной работе студентов

Самостоятельная работа студентов планируется по следующим основным направлениям:

- Изучение отдельных вопросов тематического плана дисциплины по указанию лектора.
- Подготовка к лабораторным работам.
- Подготовка к практическим занятиям и решение задач по указанию преподавателя, ведущего практические занятия.
- Подготовка к выполнению контрольных работ.

Примеры решения задач

1. Механика

Пример 1. Уравнение движения материальной точки вдоль оси x имеет вид $x = A + Bt + Ct^3$, где A = 2 m, B = 7 m/c; C = -0.5 m/c^3 . Найти координату x, скорость v и ускорение a точки в момент времени τ , равный 2 c.

Решение

Координату x найдем, подставив в уравнение движения $x = A + Bt + Ct^3$ числовые значения коэффициентов A, B, C и времени t.

$$x(\tau) = A + B\tau + C\tau^3 = 2 + 7 \cdot 2 - 0.5 \cdot 2^3 = 12 \text{ M}$$

Скорость найдем из условия, что проекция мгновенной скорости на ось x равна первой производной от координат по времени:

$$v_x = \frac{dx}{dt} = B + 3Ct^2.$$

В момент времени $t = \tau$

$$v_x(\tau) = \frac{dx}{dt} = B + 3C\tau^2 = 7 - 3 \cdot 0.5 \cdot 2^2 = 1 \text{ m/c}.$$

Ускорение точки находим из условия, что проекция ускорения на ось x равна первой производной от v_x по времени:

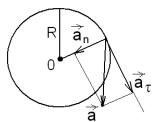
$$a_{x}(\tau) = \frac{dv_{x}}{dt} = 6Ct$$

B момент времени $t = \tau$

$$a_x(\tau) = \frac{dv_x}{dt} = 6C\tau = -6 \cdot 0.5 \cdot 2 = -6 \text{ m/c}^3.$$

Пример 2. Колесо вращается с постоянным угловым ускорением 2 рад/ c^2 . Через 0,5 с после начала движения полное ускорение точек обода колеса $13,6\,\mathrm{cm/c^2}$. Найти радиус колеса.

Дано: $\varepsilon = 2 \, \text{рад/c}^2$;


в момент t=0

 $v_0 = 0, \omega_0 = 0;$

в момент t = 0,5 c

 $a = 13.6 \text{ cm/c}^2 = 0.136 \text{ m/c}^2$.

Найти: *R*.

Решение.

Полное ускорение точек обода колеса $a=\sqrt{a_n^2+a_{ au}^2}$. Отсюда

$$a^2 = a_n^2 + a_\tau^2 \tag{1.1}$$

Нормальное ускорение $a_n = \omega^2 R$. Так как движение происходит с постоянным угловым ускорением, угловая скорость точки на ободе колеса

$$\omega = \omega_0 + \varepsilon t$$
.

В нашем случае $\omega_0=0$, а $\omega=\varepsilon t$, поэтому

$$a_n = \varepsilon^2 t^2 R \,. \tag{1.2}$$

Тангенциальное ускорение связано с угловым

$$a_n = \varepsilon R . ag{1.3}$$

Подставим выражения (1.2) и (1.3) в формулу (1.1):

$$a^2 = \varepsilon^4 t^4 R^2 + \varepsilon^2 R^2$$

Отсюда

варажения (1.2) и (1.3) в формулу (1.1).

$$a^2 = \varepsilon^4 t^4 R^2 + \varepsilon^2 R^2.$$

$$R = \frac{a}{\varepsilon \sqrt{1 + \varepsilon^2 t^4}} = \frac{0,136}{2\sqrt{1 + 2^2 (0,5)^4}} = 6 \cdot 10^{-2} \text{м} = 6 \text{ см}.$$

Пример 3. Через неподвижный блок массой $m = 0.2 \, \kappa z$ перекинут шнур, к концам которого подвешены грузы массами $m_1 = 0.3 \ \kappa z$ и $m_2 = 0.5 \, \kappa$ г. Определить силы натяжения шнура T_1 и T_2 по обе стороны блока во время движения грузов, если массу блока можно считать равномерно распределенной по ободу.

Дано:
$$m=0.2~\kappa \varepsilon; m_1=0.3~\kappa \varepsilon; m_2=0.5~\kappa \varepsilon.$$

Найти: T_1, T_2 .

Решение.

Два тела m_1 и m_2 движутся поступательно. Воспользуемся вторым законом Ньютона

$$\sum_{i=1}^{n} \vec{F}_i = m\vec{a}$$

Для первого тела имеем

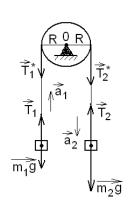
$$\vec{T}_1 + m_1 \vec{g} = m_1 \vec{a}_1 .$$

В скалярном виде (выбираем положительным направление движения вверх)

$$T_1 - m_1 g = m_1 a. (3.1)$$

Для второго тела

$$\vec{T}_2 + m_2 \vec{g} = m_2 \vec{a}_2 \,.$$


Выбираем положительным направление движения вниз

$$m_2 g - T_2 = m_2 a . (3.2)$$

Мы учли, что модули ускорений \vec{a}_1 и \vec{a}_2 равны: $a_1 = a_2 = a$.

Третье тело – блок – вращается.

Воспользуемся основным законом динамики вращательного движения

Pur 2

$$\sum \vec{M}_i = I\vec{\varepsilon} \,.$$

В нашем случае

$$\vec{M}_1 + \vec{M}_2 = I \vec{\varepsilon} \, .$$

Считая положительным направление вращения по часовой стрелке, получаем

$$M_2 - M_1 = I\varepsilon$$
.

Учитывая, что $M_1 = T_1^*R$; $M_2 = T_2^*R$; $I_{\text{обода}} = mR^2$; $\varepsilon = a/R$, получаем

$$T_2^*R - T_1^*R = mR^2 \cdot \frac{a}{R},$$

то есть

$$T_2^* - T_1^* = ma.$$

Согласно третьему закону Ньютона с учетом невесомости шнура

$$T_2^* = T_2$$
 и $T_1^* = T_1$.

Таким образом

$$T_2 - T_1 = ma. (3)$$

Итак, получили систему трех уравнений с тремя неизвестными: $a,\ T_1$ и T_2 . $\begin{cases} T_1-m_1g=m_1a,\\ m_2g-T_2=m_2a,\\ T_2-T_1=ma \end{cases}.$

$$\begin{cases} T_1 - m_1 g = m_1 a \\ m_2 g - T_2 = m_2 a \\ T_2 - T_1 = ma \end{cases}$$

Сложив, соответственно, левые и правые стороны уравнений, находим

$$(m_2 - m_1)g = (m_1 + m_2 + m)a$$
.

$$a = \frac{(m_2 - m_1)g}{m_1 + m_2 + m} \,. \tag{3.4}$$

Подставляя формулу (3.4) в первое уравнение системы, получаем

$$T_1 = m_1 \left[g + \frac{(m_2 - m_1)g}{m_1 + m_2 + m} \right] = m_1 g \left(1 + \frac{m_2 - m_1}{m_1 + m_2 + m} \right).$$

После подстановки численных значен

$$T_1 = 0.3 \cdot 10 \left(1 + \frac{0.5 - 0.3}{0.3 + 0.5 + 0.2} \right) = 3.6 H.$$

Соответственно, второе уравнение системы с учетом формулы (3.4) примет вид

$$T_2 = m_2 \left[g - \frac{(m_2 - m_1)g}{m_1 + m_2 + m} \right] = m_2 g \left(1 - \frac{m_2 - m_1}{m_1 + m_2 + m} \right).$$

$$T_2 = 0.5 \cdot 10 \left(1 - \frac{0.5 - 0.3}{0.3 + 0.5 + 0.2} \right) = 4 H.$$

Пример 4. Тележка с песком массой 40 кг движется горизонтально со скоростью 5 м/с. Камень массой 10 кг попадает в песок и движется вместе с тележкой. Найти скорость тележки после попадания камня: a) падающего по вертикали; δ) летящего горизонтально навстречу тележке со скоростью 10 м/с.

Дано:

$$m_1 = 40 \ \kappa z;$$

$$v_1 = 5 \, \text{M/c};$$

$$m_2 = 10 \ \kappa z$$
.

$$\frac{v_2 = 10 \, \text{м/c}}{\text{Найти: } u = ?}$$

Решение.

а) Рассмотрим систему, состоящую из тележки и камня. Внешняя сила (сила тяжести) направлена вертикально, поэтому, по отношению к вертикальному движению система незамкнута, и закон сохранения импульса неприменим. В горизонтальном направлении внешние силы отсутствуют, и закон сохранения импульса выполняется в проекции на

направление движения. В качестве положительного направления оси Х примем направление движения тележки.

После вертикального падения камня скорость системы уменьшится только в связи с увеличением массы. Закон сохранения импульса для данного случая имеет вид $m_1 v_1 = (m_1 + m_2) u$, откуда

$$u = \frac{m_1}{m_1 + m_2} v_1 \tag{2}$$

После подстановки числовых значений в выражение (2), получим:

$$u = \frac{40 \cdot 5}{40 + 10} = 4 \,\text{m/c} \,.$$

 δ) Запишем закон сохранения импульса в проекции на ось X для случая, когда камень летит горизонтально со скоростью $v_2 = 10 \,\mathrm{m/c}$ и застревает в песке:

$$m_1 v_1 - m_2 v_2 = (m_1 + m_2) u$$
, откуда $m_1 v_1 - m_2 v_2$ (3)

 $u = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2} \,.$ (4)

Произведем вычисления величины и

$$u = \frac{40 \cdot 5 - 10 \cdot 10}{40 + 10} = 2 \,\text{M/c}.$$

Пример 8. Платформа в виде диска массой 120 кг вращается вокруг вертикальной оси с угловой скоростью 4 pad/c. Человек массой $60 \kappa z$ стоит на краю платформы. Какова будет угловая скорость платформы, если человек переместится в её центр? Момент инерции человека считать как для материальной точки. Трением об ось пренебречь.

Дано:

$$m_1 = 120 \ \kappa c;$$

 $\omega_1 = 4 \ pa\partial/c;$
 $m_2 = 60 \ \kappa c;$
 $v_2 = 0$
Найти: $\omega_2 = ?$

Решение.

Систему, состоящую из человека и платформы, при отсутствии сил трения считаем замкнутой. Поэтому, для решения применим закон сохранения момента количества движения:

$$I_1 \omega_1 = I_2 \omega_2 \,, \tag{1}$$

где I_1 – момент инерции платформы с человеком, стоящим на её краю; I_2 – момент инерции платформы с человеком в её центре.

Поскольку

$$I_1 = \frac{m_1 R^2}{2} + m_2 R^2 \text{ и } I_2 = \frac{m_1 R^2}{2},$$
 (2)

то, подставив эти выражения в формулу (1), получим

$$\left(\frac{m_1R^2}{2} + m_2R^2\right)\omega_1 = \frac{m_1R^2}{2} \cdot \omega_2 ,$$

$$\omega_2 = \left(1 + \frac{2m_2}{m_1}\right) \cdot \omega_1 \tag{3}$$

$$m_1$$
 / В результате вычислений получим для ω_2 :
$$\omega_2 = \left(1 + \frac{2 \cdot 60}{120}\right) \cdot 4 = 8 \ pad/c.$$

2.«Молекулярная физика. Термодинамика»

Пример 1. Определить молярную массу газа, находящегося при нормальных условиях (н.у.), если его плотность равна $0.18 \,\mathrm{kr/m^3}$. Дано:

H.y.

 $P = 1.01 \cdot 10^5 \text{ Ha};$

T = 273 K:

 $\rho = 0,18 \, \kappa z/m^3$. Найти: $\mu = ?$

Решение.

Плотность вещества равна

$$\rho = \frac{m}{V},$$

где m — масса вещества, V — объём.

Выразим молярную массу газа из уравнения Менделеева-Клапейрона.

$$PV = \frac{m}{\mu}RT$$
, откуда $\mu = \frac{m}{V} \cdot \frac{RT}{P}$,

где P — давление газа, T — термодинамическая температура.

В полученное выражение подставим плотность и найдем искомую молярную массу

$$\mu = \rho \cdot \frac{RT}{P}.$$

Произведем вычисления с использованием табличных данных

$$\mu = \rho \cdot \frac{0.18 \cdot 8.31 \cdot 273}{1.01 \cdot 10^5} \approx 4 \cdot 10^{-3} \ \mathrm{Kr/Mojb} \,.$$

Пример2. Баллон содержит 80 г кислорода и 300 г аргона. Давление смеси 10 атм, температура 15^{0} С. Принимая данные газы за идеальные, определить объём баллона.

 $O_2 - m_1 = 80 \ \varepsilon = 8 \cdot 10^{-2} \ \mathrm{kr}$;

 $\mu_1 = 32 \cdot 10^{-3} \, \text{кг/моль};$

 $Ar-m_2=300\ \Gamma=3\cdot 10^{-1}\ \mathrm{K}\Gamma$; $\mu_2=40\cdot 10^{-3}\ \mathrm{K}\Gamma/\mathrm{MOJ}$ ь;

P = 10 атм = 1,01 · 10⁶ Па.

 $t = 15^{0}C \Rightarrow T = 288 K;$

Найти: V = ?

Решение.

По закону Дальтона давление смеси равно сумме парциальных давлений газов, входящих в состав смеси. Парциальным давлением газа называется давление, которое производил бы газ, если бы только он один находился в сосуде, занятом смесью.

По уравнению Менделеева-Клапейрона парциальные давления кислорода P_1 и аргона P_2 выражаются формулами

$$P_1 = \frac{m_1}{\mu_1} \cdot \frac{RT}{V} \quad \text{и} \quad P_2 = \frac{m_2}{\mu_2} \cdot \frac{RT}{V}.$$

Следовательно, по закону Дальтона для смеси газов $P = P_1 + P_2 \,$ или

$$V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) \cdot \frac{RT}{P} \,, \tag{1}$$

Подставим числовые значения в формулу (1) и произведем вычисления

$$V = \left(\frac{0.08}{32 \cdot 10^{-3}} + \frac{0.3}{40 \cdot 10^{-3}}\right) \cdot \frac{8.31 \cdot 288}{10 \cdot 1.01 \cdot 10^{5}} \approx 0.024 \text{ M}^{3} = 24 \text{ J}.$$

Пример 3. Найти кинетическую энергию вращательного движения одной молекулы кислорода при температуре $13^{0}C$, а также кинетическую энергию вращательного движения всех молекул, содержащихся в 4 г кислорода.

$$O_2 - m = 4 \ \Gamma = 4 \cdot 10^{-3} \ \mathrm{K}\Gamma \ ;$$

 $\mu = 32 \cdot 10^{-3} \ \kappa \varepsilon / Moлb;$
 $t = 13^0 C \Rightarrow T = 286 \ K;$
 $k = 1,38 \cdot 10^{-23} \ \mathrm{Дж/K};$
 $N_A = 6,02 \cdot 10^{23} \ \mathrm{молb}^{-1}.$
Найти: $\varepsilon_{\mathrm{Bp}} = ?$, $W_{\mathrm{Bp}} = ?$

Решение.

Известно, что на каждую степень свободы молекулы газа приходится одинаковая энергия, выражаемая формулой

$$\varepsilon_0 = \frac{1}{2}kT, \tag{1}$$

где k — постоянная Больцмана, T — абсолютная температура газа.

Так как вращательному движению двухатомной молекулы (молекула кислорода – двухатомная) приписываются две степени свободы, то энергия вращательного движения молекулы кислорода выразится формулой

$$\varepsilon_{\rm Bp} = 2 \cdot \frac{1}{2} kT. \tag{2}$$

Подставив числовые значения в формулу (2), получим

$$arepsilon_{
m Bp} = 2 \cdot \frac{1}{2} \cdot 1{,}38 \cdot 10^{-23} \cdot 286 = 3{,}94 \cdot 10^{-21}$$
 Дж .

Кинетическая энергия вращательного движения всех молекул газа определяется из равенства

$$W_{\rm Bp} = N\varepsilon_{\rm Bp}$$
, (3)

где N — число всех молекул газа.

Число молекул N можно получить по формуле

$$N = N_A \cdot \nu$$
, (4)

где N_A – число Авогадро, ν – число молей газа.

Если учесть, что число молей равно

$$v=\frac{m}{\mu}$$
,

где
$$m$$
 — масса газа, μ — масса одного киломоля газа, то формула (4) примет вид $N=N_A\cdot \frac{m}{\mu}$. (5)

Подставив это выражение N в равенство (3), получим

$$W_{\rm Bp} = N \cdot \frac{m}{\mu} \cdot \varepsilon_{\rm Bp} \tag{6}$$

Подставив числовые значения в формулу (6), найдем

$$W_{\rm Bp} = N_A = 6.02 \cdot 10^{23} \cdot \frac{4 \cdot 10^{-3}}{32 \cdot 10^{-3}} \cdot 3.94 \cdot 10^{-21} = 296 \, \text{Дж}.$$

Пример 4. Чему равны удельные теплоёмкости c_V и c_P некоторого двухатомного газа, если плотность этого газа при нормальных условиях равна 1,43 кг/м³? Дано:

н.у.
$$P = 1,01 \cdot 10^5$$
 Па; $T = 273 K$; $\rho = 1,43 \text{ кг/м}^3$; $i = 5$.

Найти: $c_V = ?, c_P = ?$

Решение.

Удельные теплоёмкости равны

$$c_V = \frac{i}{2} \frac{R}{\mu} \quad \text{if} \quad c_P = \frac{(i+2)}{2} \frac{R}{\mu}.$$

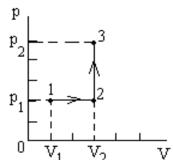
Из уравнения Клапейрона-Менделеева находи

$$\mu = \frac{m}{V} \cdot \frac{RT}{P} = \rho \cdot \frac{RT}{P},$$

так как плотность газа $\rho = m/V$.

Подставляя молярную массу в формулы для теплоёмкости, имеем:

$$c_V = \frac{i}{2} \frac{P}{\rho T}$$
 и $c_P = \frac{(i+2)}{2} \frac{P}{\rho T}$.


Произведем вычисления, учитывая, что для двухатомного газа число степеней свободы i=5. Так как при нормальных условиях давление $P=1.01\cdot 10^5$ Па и T=273~K, находим:

$$c_V = \frac{5 \cdot 1,01 \cdot 10^5}{2 \cdot 1,43 \cdot 273} = 650 \,\text{Дж/(кг \cdot K)},$$

$$c_P = \frac{(5+2) \cdot 1,01 \cdot 10^5}{2 \cdot 1,43 \cdot 273} = 970 \,\text{Дж/(кг \cdot K)}.$$

Пример 5. Кислород массой 2 кг занимает объем 1 м³ и находится под давлением $0.2 \, M\Pi a$. Газ был нагрет сначала при постоянном давлении до объёма 3 м³, а затем при постоянном объёме до давления 0,5 МПа. Найти изменение внутренней энергии газа, совершенную им работу и теплоту, переданную газу. Построить график процесса. Дано:

$$O_2 - m = 2$$
 кг;
 $V_1 = 1$ м³;
 $P_1 = 0.2$ МПа = $2 \cdot 10^5$ Па;
1) $1 \rightarrow 2$, $P = const$
 $P_2 = P_1$, $V_2 = 3$ м³;
2) $2 \rightarrow 3$, $V = const$,
 $V_3 = V_2$,
 $P_3 = 0.5$ МПа = $5 \cdot 10^5$ Па .
Найти: $\Delta U = ?$, $A = ?$, $Q = ?$

Изменение внутренней энергии газа

$$\Delta U = \frac{i}{2} \frac{m}{\mu} R \Delta T = \frac{i}{2} \frac{m}{\mu} R (T_3 - T_1), \tag{1}$$

где i — число степеней свободы молекул газа (для двухатомных молекул кислорода i=5), $\Delta T = T_3 - T_1$ – изменение температуры газа при переходе из начального состояния в конечное(состояние 3).

Начальную и конечную температуру газа найдем из уравнения Менделеева-Клапейрона

$$PV = \frac{m}{\mu}RT,$$

$$T = \frac{\mu PV}{mR}.$$

Работа расширения газа при постоянном давлении выражается формулой

$$A_{12} = P_1(V_2 - V_1) = P_1V_2 - P_1V_1 = \frac{m}{\mu}R(T_2 - T_1).$$

Работа газа, нагреваемого при постоянном объёме, равна нулю

$$A_{23}=0.$$

Следовательно, полная работа, совершаемая газом

$$A = A_{12} + A_{23} = A_{12} = \frac{m}{\mu} R(T_2 - T_1).$$

Согласно первому началу термодинамики количество теплоты Q, переданное газу, равна сумме изменения внутренней энергии ΔU газа и работы A, совершённой газом

$$Q = \Delta U + A$$
.

Произведем вычисления, учтя, что для кислорода $\mu = 32 \cdot 10^{-3} \, \kappa z / \text{моль}$ (см. справочные таблицы):

$$\begin{split} T_1 &= \frac{32 \cdot 10^{-3} \cdot 2 \cdot 10^5 \cdot 1}{2 \cdot 8,31} = 385 \, K \,; \\ T_2 &= \frac{32 \cdot 10^{-3} \cdot 2 \cdot 10^5 \cdot 3}{2 \cdot 8,31} = 1155 \, K \,; \\ T_3 &= \frac{32 \cdot 10^{-3} \cdot 5 \cdot 10^5 \cdot 3}{2 \cdot 8,31} = 2887 \, K \,; \\ A &= A_{12} + A_{23} = A_{12} = \frac{m}{\mu} R (T_2 - T_1) \\ \Delta U &= \frac{5}{2} \cdot \frac{2 \cdot 8,31 \cdot (2887 - 385)}{32 \cdot 10^{-3}} = 3,24 \cdot 10^6 \, \text{Дж} = 3,24 \, \text{МДж} \,; \\ A &= \frac{2 \cdot 8,31 \cdot (1155 - 385)}{32 \cdot 10^{-3}} = 0,4 \cdot 10^6 \, \text{Дж} = 4 \, \text{МДж} \,; \\ Q &= (3,24 + 0,4) = 3,64 \, \text{МДж} \,. \end{split}$$

График процесса приведен на рис. 2.

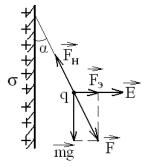
2.«Электричество»

Пример 1. К бесконечной, равномерно заряженной, вертикальной плоскости подвешен на нити одноименно заряженный шарик массой $m = 40 \,\mathrm{Mr}$ и зарядом $q = 670 \,\mathrm{nK}$ л, Натяжение нити, на которой висит шарик, $F_{\rm H} = 490$ мкН. Найти поверхностную плотность заряда на плоскости.

Дано:

$$F_{H} = 490 \text{ мкH} = 4,9 \cdot 10^{-4} \text{ }H;$$
 $m = 40 \text{ мг} = 4 \cdot 10^{-5} \text{ кг};$
 $q = 670 \text{ }n\text{К}\pi = 6,7 \cdot 10^{-10} \text{ }K\pi.$
Найти: $\sigma = ?$

Решение.


Напряженность \vec{E} электрического поля, созданного бесконечной равномерно заряженной плоскостью, направлена перпендикулярно

плоскости и численно определяется формулой
$$E=\frac{\sigma}{2\varepsilon_0\varepsilon}\text{, откуда }\sigma=2\varepsilon_0\varepsilon E\ .$$

По определению же этой величины имеем

$$\vec{E} = \frac{\vec{F}_9}{a}$$
 или $E = \frac{F_9}{a}$.

Значит

$$\sigma = \frac{2\varepsilon_0 \varepsilon F_3}{q} \,, \tag{1}$$

где F_9 — сила, действующая на заряд q со стороны электрического поля заряженной плоскости.

Запишем условие равновесия заряженного шарика

$$m\vec{g} + \vec{F}_3 + \vec{F}_H = 0.$$

Введем силу $\vec{F} = m\vec{g} + \vec{F}_{\!\scriptscriptstyle 3}$.

Очевидно, что силы $\vec{F}_{\!\!\!\! +}$ и \vec{F} должны быть направлены вдоль одной прямой, чтобы выполнялось

$$\vec{F} + \vec{F}_{H} = 0.$$

В скалярном виде

$$F-F_{\rm H}=0.$$

(2)

Как видно из рисунка

$$F = \sqrt{m^2 g^2 + F_2^2}$$
.

Тогда уравнение (2) приобретает вид

$$\sqrt{m^2g^2 + F_9^2} = F_{\rm H}$$

Отсюда

$$F_{\rm g} = \sqrt{F_{\rm H}^2 - m^2 g^2} \,. \tag{3}$$

Учитывая, что
$$\varepsilon_0=8,85\cdot 10^{-12}$$
 Ф/м, $\varepsilon=1$ (воздух) и $g=9,81$ м/с², вычисляем σ :
$$\sigma=\frac{8,85\cdot 10^{-12}\cdot 1}{6,7\cdot 10^{-10}}\sqrt{(4,9\cdot 10^{-4})^2+(4\cdot 10^{-5}\cdot 9,81)^2}=7,75\cdot 10^{-6}~\frac{\mathrm{K}\pi}{\mathrm{M}^2}.$$

Пример 4. Э. д. с. батареи $\mathcal{E} = 12 \, B$. Наибольшая сила тока, которую может дать батарея, $I_{\text{макс}} = 6 \text{ A.}$ Определить максимальную мощность $P_{\text{макс}}$, которая может выделяться во внешней цепи.

Дано:

$$\mathcal{E} = 12 B$$
:

$$I_{\text{макс}} = 6 A$$

 $\frac{I_{\text{макс}} = 6 A.}{\text{Найти: } P_{\text{макс}} = ?}$

Решение.

Мощность, выделяемую во внешней цепи, определяем по формуле

$$P = I^2 R$$

где I — сила тока в цепи, R — внешнее сопротивление.

По закону Ома для замкнутой цепи

$$I = \frac{\mathcal{E}}{R+r},\tag{1}$$

где r — внутреннее сопротивление источника тока.

Учитывая формулу (4.1), получаем

$$P = \frac{\mathcal{E}^2 R}{(R+r)^2} \,. \tag{2}$$

Для нахождения
$$P_{\text{макс}}$$
 вычислим производную $P(R)$ и приравняем её нулю
$$\left[\frac{\mathcal{E}^2R}{(R+r)^2}\right]^{/}=0; \quad \frac{(R+r)^2-2R(R+r)}{(R+r)^4}=0 \; .$$

Отсюда получаем R = r

Значит, $P = P_{\text{макс}}$, если внешнее сопротивление цепи равно внутреннему. Тогда формула (4.2) примет вид

$$P_{\text{Makc}} = \frac{\mathcal{E}^2 r}{(r+r)^2} = \frac{\mathcal{E}^2}{4r} \,. \tag{3}$$

Как видно из формулы (4.1) $I = I_{\text{макс}}$ при равенстве нулю внешнего сопротивления (ток короткого замыкания)

Отсюда находим

$$I_{\text{MAKC}} = \frac{\mathcal{E}}{r}.$$

$$r = \frac{\mathcal{E}}{I_{\text{MAKC}}} \tag{4}$$

Подставляя формулу (4.4) в уравнение (4.3), окончательно находим

$$P_{\text{MAKC}} = \frac{\mathcal{E}^2 I_{\text{MAKC}}}{4\mathcal{E}} = \frac{\mathcal{E} I_{\text{MAKC}}}{4}.$$

С учетом заданных величин получаем

$$P_{\text{\tiny MAKC}} = \frac{12 \cdot 6}{4} = 18 \text{ BT}.$$

Пример 5. В однородном магнитном поле с индукцией B = 2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом $R=10~{\rm cm}$ и шагом h = 60 см. Определить кинетическую энергию протона.

Дано:

$$B=2$$
 Тл;

$$R = 10 \text{ cm};$$

$$h = 60 \text{ см};$$

$$e = 1.6 \cdot 10^{-19} \, K_{\rm J};$$

$$\frac{m = 1,67 \cdot 10^{-27} \text{ кг.}}{\text{Найти: } W_{\text{кин}} = ?}$$

Найти:
$$W_{\text{кин}} = ?$$

Решение.

Кинетическая энергия протона (при $v \ll c$)

$$W_{\text{\tiny KHH}} = \frac{mv^2}{2} \,. \tag{1}$$

$$c = 3 \cdot 10^8$$
 м/с – скорость света.

Заряженная частица движется в магнитном поле по винтовой линии в случае, когда её скорость \vec{v} составляет с направлением вектора индукции \vec{B} угол α , не равный 90°. В таком случае частица движется по окружности в плоскости, перпендикулярной линиям индукции \vec{B} со значением составляющей скорости $\vec{v}_1 \perp \vec{B}$ и одновременно поступательно вдоль силовых линий \vec{B} со значением составляющей скорости $\vec{v}_2 \uparrow \uparrow \vec{B}$.

Как видно из рисунка 4 $v_1 = v \sin \alpha$; $v_2 = v \cos \alpha$.

$$v^2 = v_1^2 + v_2^2 \,. \tag{2}$$

Согласно второму закону Ньютона

$$F_{\pi}=ma_{n}$$
.

Сила Лоренца перпендикулярна вектору скорости \vec{v}_1 и сообщает протону нормальное ускорение

$$eBv_1 = \frac{mv_1^2}{R}.$$

$$v_1 = \frac{eBR}{m}$$
(3)

Отсюда

где R — радиус окружности.

Шаг h винтовой линии – это расстояние, пройденное протоном со скоростью v_2 вдоль силовой линии \vec{B} за время, равное периоду его вращения T по окружности

$$h = v_2 T$$

Так как
$$T=rac{2\pi R}{v_1}$$
, то $h=rac{2\pi R v_2}{v_1}$.

$$v_2 = \frac{hv_1}{2\pi R} = \frac{heB}{2\pi m} \,. \tag{4}$$

$$v_1$$
 v_1 $v_2 = \frac{hv_1}{2\pi R} = \frac{heB}{2\pi m}$. Подставляя формулы (1.3) и (1.4) в уравнение (1.2), находим
$$v^2 = \frac{R^2e^2B^2}{m^2} + \frac{h^2e^2B^2}{4\pi^2m^2} = \frac{e^2B^2(4\pi^2R^2 + h^2)}{4\pi^2m^2}$$

Отсюда

$$v = \frac{eB}{2\pi m} \sqrt{4\pi^2 R^2 + h^2} = \frac{1,6 \cdot 10^{-19} \cdot 2}{2 \cdot 3,14 \cdot 1,67 \cdot 10^{-27}} \sqrt{4 \cdot 3,14^2 \cdot 0,1^2 + 0,6^2} = 2,65 \cdot 10^7 \,\text{m/c} \,.$$

Как видно, $v \ll c$.

Таким образом, для кинетической энергии протона по формуле (1.1) получаем значение

$$W_{\text{кин}} = \frac{1,67 \cdot 10^{-27} \cdot (2,65 \cdot 10^7)^2}{2} = 5,86 \cdot 10^{-13} \,\text{Дж}.$$