
Equations of state

When you boil water in a tea kettle, the increase in temperature produces steam that whistles out of the spout

at high pressure. If you forget to poke holes in a potato before baking it, the high-pressure steam produced

inside the potato can cause it to explode messily. Water vapor in the air can condense into liquid on the sides

of a glass of ice water; if the glass is just out of the freezer, water vapor will solidify and form frost on its

sides.

These examples show the relationships among the large-scale or macroscopic properties of a substance, such

as pressure, volume, temperature, and mass. But we can also describe a substance by using a microscopic

perspective. This means investigating small-scale quantities such as the masses, speeds, kinetic energies, and

momenta of the individual molecules that make up a substance.

The macroscopic and microscopic descriptions are intimately related. For example, the (microscopic) forces

that occur when air molecules strike a solid surface (such as your skin) cause (macroscopic) atmospheric

pressure. To produce standard atmospheric pressure of 1.01 × 105 Pa, 1032 molecules strike your skin every

day with an average speed of over 1700 km/h (1000 mi/h)!

In this section we’ll begin by looking at some macroscopic aspects of matter in general. We’ll pay special

attention to the ideal gas, one of the simplest types of matter to understand. We’ll relate the macroscopic

properties of an ideal gas to the microscopic behavior of its molecules. We’ll also use microscopic ideas to

understand the heat capacities of gases and solids. Finally, we’ll look at the various phases of matter – gas,

liquid, and solid – and the conditions under which each occurs.



Quantities such as pressure, volume, temperature, and amount of substance describe the conditions, or state,

in which a particular material exists. (For example, a tank of medical oxygen has a pressure gauge and a label

stating the volume within the tank. We can add a thermometer and put the tank on a scale to measure the

mass of oxygen.) These quantities are called state variables.

The volume V of a substance is usually determined by its pressure p, temperature T, and amount of substance,

described by the mass mtotal or number of moles n. (We are calling the total mass of a substance mtotal because

later in the chapter we will use m for the mass of one molecule.) Ordinarily, we can’t change one of these

variables without causing a change in another. When the tank of oxygen gets hotter, the pressure increases. If

the tank gets too hot, it explodes.

In a few cases the relationship among p, V, T, and mtotal (or n) is simple enough that we can express it as an

equation called the equation of state. When it’s too complicated for that, we can use graphs or numerical

tables. Even then, the relationship among the variables still exists; we call it an equation of state even when

we don’t know the actual equation.

Here’s a simple (though approximate) equation of state for a solid material. The temperature coefficient of

volume expansion b is the fractional volume change ∆V/V0 per unit temperature change, and the

compressibility k is the negative of the fractional volume change ∆V/V0 per unit pressure change. If a certain

amount of material has volume V0 when the pressure is p0 and the temperature is T0, the volume V at slightly

differing pressure p and temperature T is approximately V = V0[1 + β(T – T0) – k(p – p0)]. (There is a negative

sign in front of the term k(p – p0) because an increase in pressure causes a decrease in volume.)



The ideal-gas equation

Another simple equation of state is the one for an ideal gas. We can measure the pressure (p), volume (V),

temperature (T), and amount of gas (mtotal or n). It is usually easiest to describe the amount of gas in terms

of the number of moles n, rather than the mass. The molar mass M of a compound (sometimes

confusingly called molecular weight) is the mass per mole:

Hence if we know the number of moles of gas, we can determine the mass of gas from this Equation.

Measurements of the behavior of various gases lead to three conclusions:

1. The volume V is proportional to the number of moles n. If we double n, keeping pressure and

temperature constant, the volume doubles.

2. The volume varies inversely with the absolute pressure p. If we double p while holding the temperature

T and number of moles n constant, the gas compresses to one-half of its initial volume. In other words, pV

= constant when n and T are constant.

3. The pressure is proportional to the absolute temperature T. If we double T, keeping the volume and

number of moles constant, the pressure doubles. In other words, p = (constant) × T when n and V are

constant.



We can combine these three relationships into a single ideal-gas equation:

An ideal gas is one for which the Equation holds precisely for all pressures and temperatures. This is an

idealized model; it works best at very low pressures and high temperatures, when the gas molecules are far

apart and in rapid motion. It is valid within a few percent at moderate pressures (such as a few

atmospheres) and at temperatures well above those at which the gas liquefies.

We might expect that the proportionality constant R in the ideal-gas equation would have different values

for different gases, but it turns out to have the same value for all gases, at least at sufficiently high

temperature and low pressure. It is called the gas constant (or ideal-gas constant). In SI units, in which the

unit of p is Pa (1 Pa = 1 N/m2) and the unit of V is m3, the current best numerical value of R is

R = 8.3144621(75) J/mol · K 

or R = 8.314 J/mol · K to four significant figures. Note that the units of pressure times volume are the same

as the units of work or energy (for example, N/m2 times m3); that’s why R has units of energy per mole per

unit of absolute temperature. In chemical calculations, volumes are often expressed in liters (L) and

pressures in atmospheres (atm). In this system, to four significant figures,



We can express the ideal-gas equation, in terms of the mass mtotal of gas, using expression mtotal = nM:

From this we can get an expression for the density ρ = mtotal/V of the gas:

For a constant mass (or constant number of moles) of an ideal gas the product nR is constant, so the

quantity pV/T is also constant. If the subscripts 1 and 2 refer to any two states of the same mass of a gas,

then

Notice that you don’t need the value of R to use this equation.

We used the proportionality of pressure to absolute temperature earlier to define a temperature scale in

terms of pressure in a constant-volume gas thermometer. That may make it seem that the pressure–

temperature relationship in the ideal-gas equation, is just a result of the way we define temperature. But

the ideal-gas equation also tells us what happens when we change the volume or the amount of substance.

Also, it can be shown that the gas-thermometer scale corresponds closely to a temperature scale that does

not depend on the properties of any particular material. For now, consider Eq. as being based on this

genuinely material-independent temperature scale.



Example: respiration and the ideal-gas equation

To breathe, you rely on the ideal-gas equation pV = nRT. Contraction of

the dome-shaped diaphragm muscle increases the volume V of the

thoracic cavity (which encloses the lungs), decreasing its pressure p. The

lowered pressure causes the lungs to expand and fill with air. (The

temperature T is kept constant.) When you exhale, the diaphragm relaxes,

allowing the lungs to contract and expel the air.

The van der Waals equation

In the kinetic-molecular theory, we can obtain the ideal-gas equation from a simple molecular model that

ignores the volumes of the molecules themselves and the attractive forces between them (see the Figure a).

Another equation of state, the van der Waals equation, makes approximate corrections for these two

omissions (Fig. b). This equation was developed by the 19th-century Dutch physicist J. D. van der Waals;

the interaction between atoms that we discussed earlier is named the van der Waals interaction. The van

der Waals equation is



A gas as modeled by (a) the

ideal gas equation and (b) the

van der Waals equation.

The constants a and b are different for different gases. Roughly speaking, b

represents the volume of a mole of molecules; the total volume of the molecules

is nb, and the volume remaining in which the molecules can move is V – nb.

The constant a depends on the attractive intermolecular forces, which reduce

the pressure of the gas by pulling the molecules together as they push on the

walls of the container. The decrease in pressure is proportional to the number of

molecules per unit volume in a layer near the wall (which are exerting the

pressure on the wall) and is also proportional to the number per unit volume in

the next layer beyond the wall (which are doing the attracting). Hence the

decrease in pressure due to intermolecular forces is proportional to n2/V2.

When n/V is small (that is, when the gas is dilute), the average distance between

molecules is large, the corrections in the van der Waals equation become

insignificant, and the equation of state reduces to the ideal-gas equation. As an

example, for carbon dioxide gas (CO2) the constants in the van der Waals

equation are a = 0.364 J · m3/mol2 and b = 4.27 × 10–5 m3/mol. 1 mole of an

ideal gas at T = 0°C = 273.15 K and p = 1 atm = 1.013 × 105 Pa occupies a

volume V = 0.0224 m3; according to van der Waals equation, 1 mole of CO2

occupying this volume at this temperature would be at a pressure 532 Pa less

than 1 atm, a difference of only 0.5% from the ideal-gas value.



pV-Diagrams

Isotherms, or constant-temperature

curves, for a constant amount of an

ideal gas. The highest temperature is

T4; the lowest is T1. This is a

graphical representation of the ideal-

gas equation of state.

We could in principle represent the p-V-T relationship

graphically as a surface in a three-dimensional space with

coordinates p, V, and T. This representation is useful, but

ordinary two-dimensional graphs are usually more

convenient. One of the most useful of these is a set of

graphs of pressure as a function of volume, each for a

particular constant temperature. Such a diagram is called a

pV-diagram. Each curve, representing behavior at a

specific temperature, is called an isotherm, or a pV-

isotherm.

The Figure shows pV-isotherms for a constant amount of

an ideal gas. Since p = nRT/V from ideal-gas equation of

state, along an isotherm (constant T) the pressure p is

inversely proportional to the volume V and the isotherms

are hyperbolic curves.



A pV-diagram for a nonideal gas,

showing isotherms for temperatures

above and below the critical temperature

Tc. The liquid–vapor equilibrium region

is shown as a green shaded area. At still

lower temperatures the material might

undergo phase transitions from liquid to

solid or from gas to solid; these are not

shown here.

The Figure shows a pV-diagram for a material that does not obey the

ideal gas equation. At temperatures below Tc the isotherms develop flat

regions in which we can compress the material (that is, reduce the

volume V) without increasing the pressure p. Observation shows that the

gas is condensing from the vapor (gas) to the liquid phase. The flat parts

of the isotherms in the shaded area of the Figure represent conditions of

liquid-vapor phase equilibrium. As the volume decreases, more and

more material goes from vapor to liquid, but the pressure does not

change. (To keep the temperature constant during condensation, we have

to remove the heat of vaporization, discussed before.)

When we compress such a gas at a constant temperature T2 in Figure, it

is vapor until point a is reached. Then it begins to liquefy; as the volume

decreases further, more material liquefies, and both the pressure and the

temperature remain constant. At point b, all the material is in the liquid

state. After this, any further compression requires a very rapid rise of

pressure, because liquids are in general much less compressible than

gases. At a lower constant temperature T1, similar behavior occurs, but

the condensation begins at lower pressure and greater volume than at the

constant temperature T2.



At temperatures greater than Tc, no phase transition occurs as the material is compressed; at the highest

temperatures, such as T4, the curves resemble the ideal-gas curves of the previous Figure. We call Tc the

critical temperature for this material. a little later we’ll discuss what happens to the phase of the gas above

the critical temperature.

It is possible to show that the area under a pV-curve (whether or not it is an isotherm) represents the work

done by the system during a volume change. This work, in turn, is directly related to heat transfer and

changes in the internal energy of the system.

Moles and Avogadro’s number

We have used the mole as a measure of quantity of substance. One mole of any pure chemical element or

compound contains a definite number of molecules, the same number for all elements and compounds. The

old official SI definition was:

One mole is the amount of substance that contains as many elementary entities as there are atoms in

0.012 kilogram of carbon-12.

In our discussion, the “elementary entities” are molecules. (In a monatomic substance such as carbon or

helium, each molecule is a single atom.) Atoms of a given element may occur in any of several isotopes,

which are chemically identical but have different atomic masses; “carbon-12” is a specific isotope of

carbon.



The number of molecules in a mole is called Avogadro’s number, denoted by NA. The recent best

numerical value of NA was

NA = 6.02214129(27) × 1023 molecules/mol (Avogadro’s number). 

On 16 November 2018, after a meeting of scientists from more than 60 countries at the CGPM in

Versailles, France, all SI base units were defined in terms of physical constants. This meant that each SI

unit, including the mole, would not be defined in terms of any physical objects but rather they would be

defined by constants that are, in their nature, exact.

Such changes officially came into effect on 20 May 2019. Following such changes, "one mole" of a

substance was redefined as "exactly 6.02214076×1023 elementary entities" of that substance.

So, the new numerical value of NA is exactly

NA = 6.02214076 × 1023 molecules/mol (Avogadro’s number).

The molar mass M of a compound is the mass of 1 mole. It is equal to the mass m of a single molecule

multiplied by Avogadro’s number:

When the molecule consists of a single atom, the term atomic mass is often used instead of molar mass.



Heat capacities of gases

In the simple kinetic-molecular theory it is possible to obtain the formula for the average translational

kinetic energy Ktr of a single molecule:

The average translational kinetic energy of a single molecule is the total translational kinetic energy Ktr of

all molecules divided by the number of molecules, N:

Also, the total number of molecules N is the number of moles n multiplied by Avogadro’s number NA, so N

= nNA and n/N = 1/NA. Thus the above equation becomes

The ratio R/NA is called the Boltzmann constant, k:

(The current numerical value of k is exactly 1.380649×10−23 J/molecule • K). In terms of k we can rewrite

the last Equation as



This shows that the average translational kinetic energy per molecule depends only on the

temperature, not on the pressure, volume, or kind of molecule. We can obtain the average

translational kinetic energy per mole by multiplying this Equation by Avogadro’s number and

using the relation M = NAm:

The translational kinetic energy of a mole of an ideal gas depends only on T.

When we introduced the concept of heat capacity earlier, we talked about ways to measure the

specific heat or molar heat capacity of a particular material. Now we’ll see how to predict these

on theoretical grounds.

The basis of our analysis is that heat is energy in transit. When we add heat to a substance, we are

increasing its molecular energy. We’ll assume that the volume of the gas remains constant; if we

were to let the gas expand, it would do work by pushing on the moving walls of its container, and

this additional energy transfer would have to be included in our calculations.



In the simple kinetic-molecular model as we say, the molecular energy consists of only

the translational kinetic energy Ktr of the pointlike molecules. This energy is directly

proportional to the absolute temperature T, Ktr = 3/2 nRT. When the temperature changes

by a small amount dT, the corresponding change in kinetic energy is

From the definition of molar heat capacity at constant volume, CV, we also have

dQ = nCVdT,

where dQ is the heat input needed for a temperature change dT. Now if Ktr represents the

total molecular energy, as we have assumed, then dQ and dKtr must be equal. From the

last Equations, this says



So, we obtain the formula for CV, the molar heat

capacity at constant volume of the pointlike molecules:
Molar heat capacities of gases

This surprisingly simple result says that the molar heat

capacity at constant volume is 3R/2 for any gas whose

molecules can be represented as points. Does this

Equation agree with experiment? In SI units, the Eq.

gives

CV = 3/2(8.314 J/mol · K) = 12.47 J/mol · K

For comparison, the Table gives measured values of CV for several gases. We see that for

monatomic gases our prediction is right on the money, but that it is way off for diatomic

and polyatomic gases.



Motions of a diatomic molecule.

This comparison tells us that our point-molecule model is good enough for monatomic gases but that for

diatomic and polyatomic molecules we need something more sophisticated. For example, we can picture a

diatomic molecule as two point masses, like a little elastic dumbbell (see the Figure), with an interaction

force between the atoms of the kind shown in the Fig. Such a molecule can have additional kinetic energy

associated with rotation about axes through its center of mass. The atoms may also vibrate along the line

joining them, with additional kinetic and potential energies.

When heat flows into a monatomic gas at constant volume, all of the added energy goes into an increase in

random translational molecular kinetic energy. This leads to an increase in temperature.



But when the temperature is increased by the same amount in a diatomic or polyatomic gas, additional heat

is needed to supply the increased rotational and vibrational energies. Thus polyatomic gases have larger

molar heat capacities than monatomic gases, as the Table shows.

But how do we know how much energy is associated with each additional kind of motion of a complex

molecule, compared to the translational kinetic energy? The new principle that we need is called the

principle of equipartition of energy. It can be derived from sophisticated statistical-mechanics

considerations; that derivation is beyond our scope, and we will treat the principle as an axiom.

The principle of equipartition of energy states that each velocity component (either linear or angular) has,

on average, an associated kinetic energy per molecule of 1/2kT, or one-half the product of the Boltzmann

constant and the absolute temperature. The number of velocity components needed to describe the motion

of a molecule completely is called the number of degrees of freedom. For a monatomic gas, there are three

degrees of freedom (for the velocity components vx, vy, and vz); this gives a total average kinetic energy per

molecule of 3(1/2kT).

For a diatomic molecule there are two possible axes of rotation, perpendicular to each other and to the

molecule’s axis. (We don’t include rotation about the molecule’s own axis because in ordinary collisions

there is no way for this rotational motion to change.) If we add two rotational degrees of freedom for a

diatomic molecule, the average total kinetic energy per molecule is 5/2kT instead of 3/2kT. The total kinetic

energy of n moles is Ktotal = nNA(5/2kT) = 5/2n(kNA)T = 5/2nRT, and the molar heat capacity (at constant

volume) is



In SI units,

This value is close to the measured values for diatomic gases in the last Table.

Vibrational motion can also contribute to the heat capacities of gases. Molecular bonds can stretch and

bend, and the resulting vibrations lead to additional degrees of freedom and additional energies. For most

diatomic gases, however, vibration does not contribute appreciably to heat capacity. The reason for this

involves some concepts of quantum mechanics. Briefly, vibrational energy can change only in finite steps.

If the energy change of the first step is much larger than the energy possessed by most molecules, then

nearly all the molecules remain in the minimum-energy state of motion. Changing the temperature does not

change their average vibrational energy appreciably, and the vibrational degrees of freedom are said to be

“frozen out.” In more complex molecules the gaps between permitted energy levels can be much smaller,

and then vibration does contribute to heat capacity. The rotational energy of a molecule also changes by

finite steps, but they are usually much smaller; the “freezing out” of rotational degrees of freedom occurs

only in rare instances.

In the Table the large values of CV for polyatomic molecules show the effects of vibrational energy. In

addition, a molecule with three or more atoms that are not in a straight line has three rotational degrees of

freedom.



From this discussion we expect heat capacities to be temperature-dependent, generally increasing with

increasing temperature. The Figure is a graph of the temperature dependence of CV for hydrogen gas (H2),

showing the temperatures at which the rotational and vibrational energies begin to contribute.

Experimental values of CV, the

molar heat capacity at constant

volume, for hydrogen gas (H2).

The temperature is plotted on a

logarithmic scale.



Heat capacities of solids

We can carry out a similar heat-capacity analysis for a crystalline

solid. Consider a crystal consisting of N identical atoms (a

monatomic solid). Each atom is bound to an equilibrium position

by interatomic forces. Solid materials are elastic, so forces must

permit stretching and bending of the bonds. We can think of a

crystal as an array of atoms connected by little springs (see the

Figure).

Each atom can vibrate around its equilibrium position and has

three degrees of freedom, corresponding to its three components of

velocity. According to the equipartition principle, each atom has an

average kinetic energy of 1/2 kT for each degree of freedom. In

addition, there is potential energy associated with the elastic

deformation. For a simple harmonic oscillator (discussed earlier) it

is not hard to show that the average kinetic energy is equal to the

average potential energy. In our model of a crystal, each atom is a

three-dimensional harmonic oscillator; it can be shown that the

equality of average kinetic and potential energies also holds here,

provided that the “spring” forces obey Hooke’s law.

To visualize the forces between

neighboring atoms in a crystal,

envision every atom as being

attached to its neighbors by springs.



Thus we expect each atom to have an average kinetic energy 3/2 kT and an average potential

energy 3/2 kT, or an average total energy 3kT per atom. If the crystal contains N atoms or n

moles, its total energy is Etotal = 3NkT = 3nRT. From this we conclude that the molar heat capacity

of a crystal should be

In SI units,

We have derived the rule of Dulong and Petit, which we encountered as an empirical finding in

previously made review: Monatomic solids all have molar heat capacities of about 25 J/mol • K.

The agreement is only approximate, but given the very simple nature of our model, it is quite

significant.

At low temperatures, the heat capacities of most solids decrease with decreasing temperature (see

the Figure) for the same reason that vibrational degrees of freedom of molecules are frozen out at

low temperatures. At very low temperatures the quantity kT is much smaller than the smallest

energy step the vibrating atoms can take. Hence most of the atoms remain in their lowest energy

states because the next higher energy level is out of reach.



The average vibrational energy per atom is then less

than 3kT, and the heat capacity per molecule is less

than 3k. At higher temperatures when kT is large in

comparison to the minimum energy step, the

equipartition principle holds, and the total heat

capacity is 3k per molecule or 3R per mole as the

rule of Dulong and Petit predicts. Quantitative

understanding of the temperature variation of heat

capacities was one of the triumphs of quantum

mechanics during its initial development in the

1920s.

Experimental values of CV for lead, aluminum, silicon,

and diamond. At high temperatures, CV for each solid

approaches about 3R, in agreement with the rule of

Dulong and Petit. At low temperatures, CV is much less

than 3R.



Phases of matter

An ideal gas is the simplest system to analyze from a molecular viewpoint because we ignore the

interactions between molecules. But those interactions are the very thing that makes matter condense into

the liquid and solid phases under some conditions. So it’s not surprising that theoretical analysis of liquid

and solid structure and behavior is a lot more complicated than that for gases. We won’t try to go far here

with a microscopic picture, but we can talk in general about phases of matter, phase equilibrium, and phase

transitions.

A typical pT phase

diagram, showing

regions of

temperature and

pressure at which the

various phases exist

and where phase

changes occur.

Each phase is stable in only

certain ranges of temperature and

pressure. A transition from one

phase to another ordinarily

requires phase equilibrium

between the two phases, and for

a given pressure this occurs at

only one specific temperature.

We can represent these

conditions on a graph with axes p

and T, called a phase diagram;

The Figure shows an example.

Each point on the diagram

represents a pair of values of p

and T.



Only a single phase can exist at each point in the Figure, except for

points on the solid lines, where two phases can coexist in phase

equilibrium. The fusion curve separates the solid and liquid areas

and represents possible conditions of solid-liquid phase

equilibrium. The vaporization curve separates the liquid and vapor

areas, and the sublimation curve separates the solid and vapor

areas. All three curves meet at the triple point, the only condition

under which all three phases can coexist. Earlier we used the triple-

point temperature of water to define the Kelvin temperature scale.

The Table gives triple-point data for several substances.

If we heat a substance at a constant pressure pa, it goes through a

series of states represented by the horizontal line (a) in previous

Figure.

Triple-point data

The melting and boiling temperatures at this pressure are the temperatures at which the line intersects the

fusion and vaporization curves, respectively. When the pressure is ps, constantpressure heating transforms a

substance from solid directly to vapor. This process is called sublimation; the intersection of line (s) with the

sublimation curve gives the temperature Ts at which it occurs for a pressure ps. At any pressure less than the

triple-point pressure, no liquid phase is possible. The triple-point pressure for carbon dioxide (CO2) is 5.1

atm. At normal atmospheric pressure, solid CO2 (“dry ice”) undergoes sublimation; there is no liquid phase.



Line (b) in the Fig. represents compression at a constant temperature Tb. The material

passes from vapor to liquid and then to solid at the points where line (b) crosses the

vaporization curve and fusion curve, respectively. Line (d) shows constant-temperature

compression at a lower temperature Td; the material passes from vapor to solid at the point

where line (d) crosses the sublimation curve.

We saw in the pV-diagram for a nonideal gas (van der Waals isotherms) that a liquid-

vapor phase transition occurs only when the temperature and pressure are less than those

at the point at the top of the green shaded area labeled “Liquid-vapor phase equilibrium

region.” This point corresponds to the endpoint at the top of the vaporization curve in our

last Fig. It is called the critical point, and the corresponding values of p and T are called

the critical pressure and temperature, pc and Tc. A gas at a pressure above the critical

pressure does not separate into two phases when it is cooled at constant pressure (along a

horizontal line above the critical point in the Fig.). Instead, its properties change gradually

and continuously from those we ordinarily associate with a gas (low density, large

compressibility) to those of a liquid (high density, small compressibility) without a phase

transition.



You can understand this by thinking about liquid-phase transitions at successively higher

points on the vaporization curve. As we approach the critical point, the differences in

physical properties (such as density and compressibility) between the liquid and vapor

phases become smaller. Exactly at the critical point they all become zero, and at this point

the distinction between liquid and vapor disappears. The heat of vaporization also grows

smaller as we approach the critical point, and it too becomes zero at the critical point.

For nearly all familiar materials the critical pressures are much greater than atmospheric

pressure, so we don’t observe this behavior in everyday life. For example, the critical

point for water is at 647.4 K and 221.2 × 105 Pa (about 218 atm or 3210 psi). But high-

pressure steam boilers in electric generating plants regularly run at pressures and

temperatures well above the critical point.

Many substances can exist in more than one solid phase. A familiar example is carbon,

which exists as noncrystalline soot and crystalline graphite and diamond. Water is another

example; more than a dozen types of ice, differing in crystal structure and physical

properties, have been observed at very high pressures.



We remarked earlier that for any material, it can be useful to represent the equation of state as

a surface in a three-dimensional space with coordinates p, V, and T. The Figure shows a

typical pVT-surface. The light lines represent pV-isotherms; projecting them onto the pV-

plane gives a diagram similar to van der Waals isotherms. The pV-isotherms represent

contour lines on the pVT-surface, just as contour lines on a topographic map represent the

elevation (the third dimension) at each point. The projections of the edges of the surface onto

the pT-plane give the pT phase diagram of previous Fig.

Line abcdef in our present Fig. represents constant-pressure heating, with melting along bc

and vaporization along de. Note the volume changes that occur as T increases along this line.

Line ghjklm corresponds to an isothermal (constant temperature) compression, with

liquefaction along hj and solidification along kl. Between these, segments gh and jk represent

isothermal compression with increase in pressure; the pressure increases are much greater in

the liquid region jk and the solid region lm than in the vapor region gh.

Finally, line nopq represents isothermal solidification directly from vapor, as in the formation

of snowflakes or frost.

pVT-surfaces



A pVT-surface for a

substance that expands

on melting. Projections

of the boundaries on

the surface onto the

pT- and pV-planes are

also shown.



A pVT-surface for an ideal gas. At the left, each orange line

corresponds to a certain constant volume; at the right, each green line

corresponds to a certain constant temperature.

The Figure shows the much

simpler pVT-surface for a

substance that obeys the ideal-

gas equation of state under all

conditions. The projections of

the constant-temperature curves

onto the pV-plane correspond to

the isotherms for an ideal gas,

and the projections of the

constant-volume curves onto the

pT-plane show that pressure is

directly proportional to absolute

temperature. The Figure also

shows the isobars (curves of

constant pressure) and isochors

(curves of constant volume) for

an ideal gas.



Thermodynamic systems

We can study energy transfer through mechanical work and through heat transfer. Now we are ready

to combine and generalize these principles.

We always talk about energy transfer to or from some specific system. The system might be a

mechanical device, a biological organism, or a specified quantity of material, such as the refrigerant

in an air conditioner or steam expanding in a turbine. In general, a thermodynamic system is any

collection of objects that is convenient to regard as a unit, and that may have the potential to exchange

energy with its surroundings.

The popcorn in the pot is a thermodynamic system. In the thermodynamic process shown here, heat is

added to the system, and the system does work on its surroundings to lift the lid of the pot.

A familiar example is a quantity of popcorn kernels in a pot

with a lid. When the pot is placed on a stove, energy is added to

the popcorn by conduction of heat. As the popcorn pops and

expands, it does work as it exerts an upward force on the lid

and moves it through a displacement (see the Figure). The state

of the popcorn – its volume, temperature, and pressure –

changes as it pops. A process such as this one, in which there

are changes in the state of a thermodynamic system, is called a

thermodynamic process.



In mechanics we used the concept of system with free-body

diagrams and with conservation of energy and momentum. For

thermodynamic systems, as for all others, it is essential to define

clearly at the start exactly what is and is not included in the

system. Only then can we describe unambiguously the energy

transfers into and out of that system. For instance, in our

popcorn example we defined the system to include the popcorn

but not the pot, lid, or stove.

Thermodynamics has its roots in many practical problems other

than popping popcorn. The gasoline engine in an automobile,

the jet engines in an airplane, and the rocket engines in a launch

vehicle use the heat of combustion of their fuel to perform

mechanical work in propelling the vehicle. Muscle tissue in

living organisms metabolizes chemical energy in food and

performs mechanical work on the organism’s surroundings. A

steam engine or steam turbine uses the heat of combustion of

coal or other fuel to perform mechanical work such as driving

an electric generator or pulling a train.

(a) A rocket engine uses the heat of

combustion of its fuel to do work propelling

the launch vehicle. (b) Humans and other

biological organisms are more complicated

systems than we can analyze fully in this

book, but the same basic principles of

thermodynamics apply to them.



Signs for heat and work in thermodynamics

A thermodynamic system may exchange

energy with its surroundings

(environment) by means of heat, work,

or both. Note the sign conventions for Q

and W.

We describe the energy relationships in any thermodynamic process

in terms of the quantity of heat Q added to the system and the work

W done by the system. Both Q and W may be positive, negative, or

zero (see the Figure). A positive value of Q represents heat flow

into the system, with a corresponding input of energy to it; negative

Q represents heat flow out of the system. A positive value of W

represents work done by the system against its surroundings, such

as work done by an expanding gas, and hence corresponds to energy

leaving the system. Negative W, such as work done during

compression of a gas in which work is done on the gas by its

surroundings, represents energy entering the system.

Be careful with the sign of work W! Note that our sign rule for work

is opposite to the one we used in mechanics, in which we always

spoke of the work done by the forces acting on a body. In

thermodynamics it is usually more convenient to call W the work

done by the system so that when a system expands, the pressure,

volume change, and work are all positive. Use the sign rules for

work and heat consistently!



Work done during volume changes

A simple example of a thermodynamic system is a quantity of gas enclosed in a cylinder

with a movable piston. Internal-combustion engines, steam engines, and compressors in

refrigerators and air conditioners all use some version of such a system. In the next

several sections we will use the gas-in-cylinder system to explore several kinds of

thermodynamic processes.

We’ll use a microscopic viewpoint, based on the kinetic and potential energies of

individual molecules in a material, to develop intuition about thermodynamic quantities.

But it is important to understand that the central principles of thermodynamics can be

treated in a completely macroscopic way, without reference to microscopic models.

Indeed, part of the great power and generality of thermodynamics is that it does not

depend on details of the structure of matter.

First we consider the work done by the system during a volume change. When a gas

expands, it pushes outward on its boundary surfaces as they move outward. Hence an

expanding gas always does positive work. The same thing is true of any material that

expands under pressure, such as the popcorn in the Figure above.



A molecule striking a piston (a) does positive work if the piston is moving

away from the molecule and (b) does negative work if the piston is

moving toward the molecule. Hence a gas does positive work when it

expands as in (a) but does negative work when it compresses as in (b).

We can understand the work done by a gas in a volume

change by considering the molecules that make up the gas.

When one such molecule collides with a stationary surface, it

exerts a momentary force on the wall but does no work

because the wall does not move. But if the surface is moving,

like a piston in a gasoline engine, the molecule does do work

on the surface during the collision. If the piston in the Figure

a moves to the right, so the volume of the gas increases, the

molecules that strike the piston exert a force through a

distance and do positive work on the piston. If the piston

moves toward the left as in Fig. b, so the volume of the gas

decreases, positive work is done on the molecule during the

collision. Hence the gas molecules do negative work on the

piston.



The infinitesimal work done by the

system during the small expansion dx is

dW = pAdx.

The next Figure shows a system whose volume can change (a gas,

liquid, or solid) in a cylinder with a movable piston. Suppose that

the cylinder has cross-sectional area A and that the pressure

exerted by the system at the piston face is p. The total force F

exerted by the system on the piston is F = pA. When the piston

moves out an infinitesimal distance dx, the work dW done by this

force is

dW = F dx = pA dx 

But

A dx = dV

where dV is the infinitesimal change of volume of the system. Thus we can express the work done by the

system in this infinitesimal volume change as dW = p dV In a finite change of volume from V1 to V2,

In general, the pressure of the system may vary during the volume change.



The work done equals the area under the curve on a pV-diagram.

For example, this is the case in the cylinders of an automobile engine as the pistons move back and forth.

To evaluate the integral in the Equation, we have to know how the pressure varies as a function of volume.

We can represent this relationship as a graph of p as a function of V (a pV-diagram).

The Figure shows a simple example. In this figure, the last Equation is represented graphically as the area

under the curve of p versus V between the limits V1 and V2. (In mechanics we use a similar interpretation

of the work done by a force F as the area under the curve of F versus x between the limits x1 and x2.)



According to the rule we stated above, work is positive when a system expands. In an

expansion from state 1 to state 2 in Fig. a, the area under the curve and the work are

positive. A compression from 1 to 2 in Fig. b gives a negative area; when a system is

compressed, its volume decreases and it does negative work on its surroundings.

Be careful with subscripts 1 and 2 in these notations, V1 is the initial volume and V2 is

the final volume. That’s why labels 1 and 2 are reversed in Fig. b compared to Fig. a,

even though both processes move between the same two thermodynamic states.

If the pressure p remains constant while the volume changes from V1 to V2 (Fig. c), the

work done by the system is

If the volume is constant, there is no displacement and the system does no work.



Internal energy and the first law of thermodynamics

Internal energy is one of the most important concepts in thermodynamics. When we discussed

energy changes for a body sliding with friction, we stated that warming a body increased its

internal energy and that cooling the body decreased its internal energy. But what is internal

energy? We can look at it in various ways; let’s start with one based on the ideas of mechanics.

Matter consists of atoms and molecules, and these are made up of particles having kinetic and

potential energies. We tentatively define the internal energy of a system as the sum of the kinetic

energies of all of its constituent particles, plus the sum of all the potential energies of interaction

among these particles.

Internal energy does not include potential energy arising from the interaction between the system

and its surroundings. If the system is a glass of water, placing it on a high shelf increases the

gravitational potential energy arising from the interaction between the glass and the earth. But

this has no effect on the interactions among the water molecules, and so the internal energy of the

water does not change.

We use the symbol U for internal energy. (We used this symbol in our study of mechanics to

represent potential energy. However, U has a different meaning in thermodynamics.) During a

change of state of the system, the internal energy may change from an initial value U1 to a final

value U2. We denote the change in internal energy as ∆U = U2 – U1.



When we add a quantity of heat Q to a system and the system does no work during the process (so W = 0),

the internal energy increases by an amount equal to Q; that is, ∆U = Q. When a system does work W by

expanding against its surroundings and no heat is added during the process, energy leaves the system and

the internal energy decreases: W is positive, Q is zero, and ∆U = –W. When both heat transfer and work

occur, the total change in internal energy is

We can rearrange this to the form Q = ∆U + W The message of this Equation is that when heat Q is added

to a system, some of this added energy remains within the system, changing its internal energy by ∆U; the

remainder leaves the system as the system does work W on its surroundings. Because W and Q may be

positive, negative, or zero, ∆U can be positive, negative, or zero for different processes (see the Figure

below).

The last two Equations represents the first law of thermodynamics. It is a generalization of the principle

of conservation of energy to include energy transfer through heat as well as mechanical work. As you will

see in later chapters, this principle can be extended to ever-broader classes of phenomena by identifying

additional forms of energy and energy transfer. In every situation in which it seems that the total energy in

all known forms is not conserved, it has been possible to identify a new form of energy such that the total

energy, including the new form, is conserved.



In a thermodynamic process, the internal energy U of a system may (a) increase (∆U > 0), (b) decrease (∆U < 0), or (c)

remain the same (∆U = 0).

Understanding the first law of thermodynamics

At the beginning of this discussion we tentatively defined internal energy in terms of microscopic kinetic and

potential energies. But actually calculating internal energy in this way for any real system would be

hopelessly complicated. Furthermore, this definition isn’t an operational one: It doesn’t describe how to

determine internal energy from physical quantities that we can measure.

So let’s look at internal energy in another way. Starting over, we define the change in internal energy ∆U

during any change of a system as the quantity given by Eq. ∆U = Q – W. This is an operational definition

because we can measure Q and W. It does not define U itself, only ∆U. This is not a shortcoming because we

can define the internal energy of a system to have a specified value in some reference state, and then use the

Equation of the first law of thermodynamics to define the internal energy in any other state.



This is analogous to our previous treatment of potential energy, in which we arbitrarily defined the

potential energy of a mechanical system to be zero at a certain position. This new definition trades one

difficulty for another. If we define ∆U by the Eq., then when the system goes from state 1 to state 2 by

two different paths, how do we know that ∆U is the same for the two paths? Q and W are, in general,

not the same for different paths. If ∆U, which equals Q – W, is also path dependent, then ∆U is

ambiguous. If so, the concept of internal energy of a system is subject to the same criticism as the

erroneous concept of quantity of heat in a system.

The only way to answer this question is through experiment. For various materials we measure Q and W

for various changes of state and various paths to learn whether ∆U is or is not path dependent. The

results of many such investigations are clear and unambiguous: While Q and W depend on the path, ∆U

= Q – W is independent of path. The change in internal energy of a system during any thermodynamic

process depends only on the initial and final states, not on the path leading from one to the other.

Experiment, then, is the ultimate justification for believing that a thermodynamic system in a specific

state has a unique internal energy that depends only on that state. An equivalent statement is that the

internal energy U of a system is a function of the state coordinates p, V, and T (actually, any two of

these, since the three variables are related by the equation of state). To say that the first law of

thermodynamics represents conservation of energy for thermodynamic processes is correct, as far as it

goes.



But an important additional aspect of the first law is the fact that

internal energy depends only on the state of a system (see the

Figure). In changes of state, the change in internal energy is

independent of the path. All this may seem a little abstract if you

are satisfied to think of internal energy as microscopic

mechanical energy. There’s nothing wrong with that view, and we

will make use of it at various times during our discussion. But as

for heat, a precise operational definition of internal energy must

be independent of the detailed microscopic structure of the

material. The internal energy of a cup of

coffee depends on just its

thermodynamic state – how

much water and ground coffee

it contains, and what its

temperature is. It does not

depend on the history of how

the coffee was prepared – that

is, the thermodynamic path that

led to its current state.

Your body is a thermodynamic system too. When you exercise,

your body does work (such as the work done to lift your body as

a whole in a push-up). Hence W > 0. Your body also warms up

during exercise; by perspiration and other means the body rids

itself of this heat, so Q < 0. Since Q is negative and W is positive,

∆U = Q – W < 0 and the body’s internal energy decreases. That’s

why exercise helps you lose weight: It uses up some of the

internal energy stored in your body in the form of fat.



Cyclic processes and isolated systems 

Two special cases of the first law of thermodynamics

are worth mentioning. A process that eventually returns

a system to its initial state is called a cyclic process. For

such a process, the final state is the same as the initial

state, and so the total internal energy change must be

zero. Then

U2 = U1 and Q = W 

If a net quantity of work W is done by the system during

this process, an equal amount of energy must have

flowed into the system as heat Q. But there is no reason

either Q or W individually has to be zero (see the

Figure). Another special case occurs in an isolated

system, one that does no work on its surroundings and

has no heat flow to or from its surroundings. For any

process taking place in an isolated system,

W = Q = 0 and therefore U2 = U1 = ∆U = 0 

In other words, the internal energy of an isolated system

is constant

Every day, your body (a thermodynamic system)

goes through a cyclic thermodynamic process like

this one. Heat Q is added by metabolizing food,

and your body does work W in breathing,

walking, and other activities. If you return to the

same state at the end of the day, Q = W and the net

change in your internal energy is zero.



Infinitesimal changes of state

In the preceding examples the initial and final states differ by a finite amount. Later we will consider

infinitesimal changes of state in which a small amount of heat dQ is added to the system, the system does a

small amount of work dW, and its internal energy changes by an amount dU. For such a process,

For the systems we will discuss, the work dW is given by dW = p dV, so we can also state the first law as

dU = dQ – p dV

Kinds of thermodynamic processes

In this section we describe four specific kinds of thermodynamic processes that occur often in practical

situations. We can summarize these briefly as “no heat transfer” or adiabatic, “constant volume” or

isochoric, “constant pressure” or isobaric, and “constant temperature” or isothermal. For some of these

processes we can use a simplified form of the first law of thermodynamics.

Adiabatic process
An adiabatic process is defined as one with no heat transfer into or out of a system; Q = 0. We can prevent

heat flow either by surrounding the system with thermally insulating material or by carrying out the

process so quickly that there is not enough time for appreciable heat flow.



When the cork is popped on a bottle of

champagne, the pressurized gases inside

the bottle expand rapidly and do work

on the outside air (W > 0). There is little

time for the gases to exchange heat with

their surroundings, so the expansion is

nearly adiabatic (Q = 0). Hence the

internal energy of the expanding gases

decreases (∆U = –W < 0) and their

temperature drops. This makes water

vapor condense and form a miniature

cloud.

From the first law we find that for every adiabatic process,

U2 – U1 = ∆U = –W (adiabatic process) 

When a system expands adiabatically, W is positive (the system does

work on its surroundings), so ∆U is negative and the internal energy

decreases. When a system is compressed adiabatically, W is negative

(work is done on the system by its surroundings) and U increases. In

many (but not all) systems an increase of internal energy is

accompanied by a rise in temperature, and a decrease in internal

energy by a drop in temperature (see the Figure).

The compression stroke in an internal-combustion engine is an

approximately adiabatic process. The temperature rises as the air–fuel

mixture in the cylinder is compressed. The expansion of the burned

fuel during the power stroke is also an approximately adiabatic

expansion with a drop in temperature.

To learn other important things (details about an adiabatic, isochoric,

isobaric and isothermal processes, internal energy, relating of molar

heat capacities Cp and CV for an ideal gas), please see description of

the lab “The Clément-Desormes experiment” in our manual “General

physics: Laboratory works”!



Directions of thermodynamic processes

Many thermodynamic processes proceed naturally in one direction but not the opposite. For example, heat

by itself always flows from a hot body to a cooler body, never the reverse. Heat flow from a cool body to a

hot body would not violate the first law of thermodynamics; energy would be conserved. But it doesn’t

happen in nature. Why not? As another example, note that it is easy to convert mechanical energy

completely into heat; this happens every time we use a car’s brakes to stop it. In the reverse direction, there

are plenty of devices that convert heat partially into mechanical energy. (An automobile engine is an

example.) But no one has ever managed to build a machine that converts heat completely into mechanical

energy. Again, why not?

The answer to both of these questions has to do with the directions of thermodynamic processes and is

called the second law of thermodynamics. This law places fundamental limitations on the efficiency of an

engine or a power plant. It also places limitations on the minimum energy input needed to operate a

refrigerator. So the second law is directly relevant for many important practical problems.

Thermodynamic processes that occur in nature are all irreversible processes. These are processes that

proceed spontaneously in one direction but not the other. The flow of heat from a hot body to a cooler body

is irreversible, as is the free expansion of a gas. Sliding a book across a table converts mechanical energy

into heat by friction; this process is irreversible, for no one has ever observed the reverse process (in which

a book initially at rest on the table would spontaneously start moving and the table and book would cool

down).



Despite this preferred direction for every natural process, we can think of a class of idealized processes

that would be reversible. A system that undergoes such an idealized reversible process is always very

close to being in thermodynamic equilibrium within itself and with its surroundings. Any change of state

that takes place can then be reversed by making only an infinitesimal change in the conditions of the

system. For example, we can reverse heat flow between two bodies whose temperatures differ only

infinitesimally by making only a very small change in one temperature or the other.

Reversible processes are thus equilibrium processes, with the system always in thermodynamic

equilibrium. Of course, if a system were truly in thermodynamic equilibrium, no change of state would

take place. Heat would not flow into or out of a system with truly uniform temperature throughout, and a

system that is truly in mechanical equilibrium would not expand and do work against its surroundings. A

reversible process is an idealization that can never be precisely attained in the real world. But by making

the temperature gradients and the pressure differences in the substance very small, we can keep the system

very close to equilibrium states and make the process nearly reversible.

By contrast, heat flow with finite temperature difference, free expansion of a gas, and conversion of work

to heat by friction are all irreversible processes; no small change in conditions could make any of them go

the other way. They are also all nonequilibrium processes, in that the system is not in thermodynamic

equilibrium at any point until the end of the process.



The second law of thermodynamics

Experimental evidence suggests strongly that it is impossible to build a heat engine that converts heat

completely to work – that is, an engine with 100% thermal efficiency. This impossibility is the basis of one

statement of the second law of thermodynamics, as follows:

We will call this the “engine” statement of the second law. (It is also known to physicists as the Kelvin–

Planck statement of this law.)

The basis of the second law of thermodynamics is the difference between the nature of internal energy and

that of macroscopic mechanical energy. In a moving body the molecules have random motion, but

superimposed on this is a coordinated motion of every molecule in the direction of the body’s velocity. The

kinetic energy associated with this coordinated macroscopic motion is what we call the kinetic energy of the

moving body. The kinetic and potential energies associated with the random motion constitute the internal

energy.

When a body sliding on a surface comes to rest as a result of friction, the organized motion of the body is

converted to random motion of molecules in the body and in the surface. Since we cannot control the

motions of individual molecules, we cannot convert this random motion completely back to organized

motion. We can convert part of it, and this is what a heat engine does.



If the second law were not true, we could power an automobile or run a power plant by cooling the

surrounding air. Neither of these impossibilities violates the first law of thermodynamics. The second law,

therefore, is not a deduction from the first but stands by itself as a separate law of nature. The first law

denies the possibility of creating or destroying energy; the second law limits the availability of energy and

the ways in which it can be used and converted.

Restating the second law

An analysis of refrigerators forms the basis for an alternative statement of the second law of

thermodynamics. Heat flows spontaneously from hotter to colder bodies, never the reverse. A refrigerator

does take heat from a colder to a hotter body, but its operation requires an input of mechanical energy or

work. We can generalize this observation:

We’ll call this the “refrigerator” statement of the second law. (It is also known as the Clausius statement.) It

may not seem to be very closely related to the “engine” statement. In fact, though, the two statements are

completely equivalent.

The conversion of work to heat and the heat flow from hot to cold across a finite temperature gradient are

irreversible processes. The “engine” and “refrigerator” statements of the second law state that these

processes can be only partially reversed.



We could cite other examples. Gases naturally flow from a region of high pressure to a region of low

pressure; gases and miscible liquids left by themselves always tend to mix, not to unmix. The second law

of thermodynamics is an expression of the inherent one-way aspect of these and many other irreversible

processes. Energy conversion is an essential aspect of all plant and animal life and of human technology,

so the second law of thermodynamics is of fundamental importance.

Entropy
The second law of thermodynamics, as we have stated it, is not an equation or a quantitative relationship

but rather a statement of impossibility. However, the second law can be stated as a quantitative

relationship with the concept of entropy, the subject of this section.

We have talked about several processes that proceed naturally in the direction of increasing randomness.

Irreversible heat flow increases randomness: The molecules are initially sorted into hotter and cooler

regions, but this sorting is lost when the system comes to thermal equilibrium. Adding heat to a body also

increases average molecular speeds; therefore, molecular motion becomes more random. In the free

expansion of a gas, the molecules have greater randomness of position after the expansion than before.

Entropy provides a quantitative measure of randomness. To introduce this concept, let’s consider an

infinitesimal isothermal expansion of an ideal gas. We add heat dQ and let the gas expand just enough to

keep the temperature constant. Because the internal energy of an ideal gas depends on only its

temperature, the internal energy is also constant; thus from the first law, the work dW done by the gas is

equal to the heat dQ added. That is,



The gas is more disordered after the expansion than before: The molecules are moving in a larger volume

and have more randomness of position. Thus the fractional volume change dV/V is a measure of the

increase in randomness, and the above equation shows that it is proportional to the quantity dQ/T. We

introduce the symbol S for the entropy of the system, and we define the infinitesimal entropy change dS

during an infinitesimal reversible process at absolute temperature T as

If a total amount of heat Q is added during a reversible isothermal process at absolute temperature T, the

total entropy change ∆S = S2 – S1 is given by

Entropy has units of energy divided by temperature; the SI unit of entropy is 1 J/K.

We can see how the quotient Q/T is related to the increase in randomness. Higher temperature means

greater randomness of motion. If the substance is initially cold, with little molecular motion, adding heat Q

causes a substantial fractional increase in molecular motion and randomness. But if the substance is

already hot, the same quantity of heat adds relatively little to the greater molecular motion already present.

So Q/T is an appropriate characterization of the increase in randomness when heat flows into a system.



We can generalize the definition of entropy change to include any reversible process leading from one state

to another, whether it is isothermal or not. We represent the process as a series of infinitesimal reversible

steps. During a typical step, an infinitesimal quantity of heat dQ is added to the system at absolute

temperature T. Then we sum (integrate) the quotients dQ/T for the entire process; that is,

Because entropy is a measure of the randomness of a system in any specific state, it must depend only on

the current state of the system, not on its past history. (It is possible to verify this statement.) When a system

proceeds from an initial state with entropy S1 to a final state with entropy S2, the change in entropy ∆S = S2

– S1 defined by the last Equation does not depend on the path leading from the initial to the final state but is

the same for all possible processes leading from state 1 to state 2. Thus the entropy of a system must also

have a definite value for any given state of the system. Internal energy, introduced earlier, also has this

property, although entropy and internal energy are very different quantities.

Since entropy is a function only of the state of a system, we can also compute entropy changes in

irreversible (nonequilibrium) processes for which these last Equations are not applicable. We simply invent

a path connecting the given initial and final states that does consist entirely of reversible equilibrium

processes and compute the total entropy change for that path. It is not the actual path, but the entropy

change must be the same as for the actual path.



As with internal energy, the above discussion does not tell us how to calculate entropy itself, but only the

change in entropy in any given process. Just as with internal energy, we may arbitrarily assign a value to

the entropy of a system in a specified reference state and then calculate the entropy of any other state with

reference to this.

In an idealized, reversible process involving only equilibrium states, the total entropy change of the system

and its surroundings is zero. But all irreversible processes involve an increase in entropy. Unlike energy,

entropy is not a conserved quantity. The entropy of an isolated system can change, but as we shall see, it

can never decrease. The free expansion of a gas is an irreversible process in an isolated system in which

there is an entropy increase.

The results of example about the flow of heat from a higher to a lower temperature are characteristic of all

natural (that is, irreversible) processes. When we include the entropy changes of all the systems taking part

in the process, the increases in entropy are always greater than the decreases. In the special case of a

reversible process, the increases and decreases are equal. Hence we can state the general principle: When

all systems taking part in a process are included, the entropy either remains constant or increases. In

other words: No process is possible in which the total entropy decreases, when all systems taking part

in the process are included. This is an alternative statement of the second law of thermodynamics in

terms of entropy. Thus it is equivalent to the “engine” and “refrigerator” statements discussed earlier. The

Figure below shows a specific example of this general principle.



The mixing of colored ink and water starts

from a state of low entropy in which each

fluid is separate and distinct from the

other. In the final state, both the ink and

water molecules are spread randomly

throughout the volume of liquid, so the

entropy is greater. Spontaneous unmixing

of the ink and water, a process in which

there would be a net decrease in entropy,

is never observed.

The increase of entropy in every natural, irreversible process measures the increase of randomness in the

universe associated with that process. Consider again the example of mixing hot and cold water. We might

have used the hot and cold water as the high- and low-temperature reservoirs of a heat engine. While

removing heat from the hot water and giving heat to the cold water, we could have obtained some

mechanical work. But once the hot and cold water have been mixed and have come to a uniform

temperature, this opportunity to convert heat to mechanical work is lost irretrievably. The lukewarm water

will never unmix itself and separate into hotter and colder portions. No decrease in energy occurs when the

hot and cold water are mixed. What has been lost is the opportunity to convert part of the heat from the hot

water into mechanical work. Hence when entropy increases, energy becomes less available, and the

universe becomes more random or “run down.”


