
Electricity
Electric charge

The ancient Greeks discovered as early as 600 b.c. that after they rubbed amber with wool, the amber

could attract other objects. Today we say that the amber has acquired a net electric charge, or has become

charged. The word “electric” is derived from the Greek word elektron, meaning amber. When you scuff

your shoes across a nylon carpet, you become electrically charged, and you can charge a comb by passing

it through dry hair.

Plastic rods and fur (real or fake) are particularly good for demonstrating electrostatics, the interactions

between electric charges that are at rest (or nearly so). After we charge both plastic rods in Figure a by

rubbing them with the piece of fur, we find that the rods repel each other.

When we rub glass rods with silk, the glass rods also become charged and repel each other (Fig. b). But a

charged plastic rod attracts a charged glass rod; furthermore, the plastic rod and the fur attract each other,

and the glass rod and the silk attract each other (Fig. c).

These experiments and many others like them have shown that there are exactly two kinds of electric

charge: the kind on the plastic rod rubbed with fur and the kind on the glass rod rubbed with silk.

Benjamin Franklin (1706–1790) suggested calling these two kinds of charge negative and positive,

respectively, and these names are still used. The plastic rod and the silk have negative charge; the glass rod

and the fur have positive charge.



Experiments in electrostatics. (a) Negatively charged objects repel each other. (b) Positively charged objects

repel each other. (c) Positively charged objects and negatively charged objects attract each other.



The attraction and repulsion of two charged objects are sometimes summarized as “Like charges

repel, and opposite charges attract.” But “like charges” does not mean that the two charges are

exactly identical, only that both charges have the same algebraic sign (both positive or both

negative). “Opposite charges” means that both objects have an electric charge, and those charges

have different signs (one positive and the other negative).

A laser printer (see the next Figure) utilizes the forces between charged bodies. The printer’s

light-sensitive imaging drum is given a positive charge. As the drum rotates, a laser beam shines

on selected areas of the drum, leaving those areas with a negative charge. Positively charged

particles of toner adhere only to the areas of the drum “written” by the laser. When a piece of

paper is placed in contact with the drum, the toner particles stick to the paper and form an image.



Schematic diagram of the operation of a laser printer.

Electric charge and the structure of matter

When you charge a rod by rubbing it with fur or silk as in Figure above, there is no visible change in the

appearance of the rod. What, then, actually happens to the rod when you charge it? To answer this question,

we must look more closely at the structure of atoms, the building blocks of ordinary matter.



The structure of an atom. The

particular atom depicted here is

lithium (see the next Figure a).

The structure of atoms can be described in terms of three particles: the

negatively charged electron, the positively charged proton, and the

uncharged neutron (see the figure). The proton and neutron are

combinations of other entities called quarks, which have charges of ±

1/3 and ± 2/3 times the electron charge. Isolated quarks have not been

observed, and there are theoretical reasons to believe that it is

impossible in principle to observe a quark in isolation.

The protons and neutrons in an atom make up a small, very dense core

called the nucleus, with dimensions of the order of 10–15 m.

Surrounding the nucleus are the electrons, extending out to distances

of the order of 10–10 m from the nucleus. If an atom were a few

kilometers across, its nucleus would be the size of a tennis ball. The

negatively charged electrons are held within the atom by the attractive

electric forces exerted on them by the positively charged nucleus. (The

protons and neutrons are held within stable atomic nuclei by an

attractive interaction, called the strong nuclear force, that overcomes

the electric repulsion of the protons. The strong nuclear force has a

short range, and its effects do not extend far beyond the nucleus.)



The masses of the individual particles, to the precision that they are presently known, are

The numbers in parentheses are the uncertainties in the last two digits. Note that the masses of the proton

and neutron are nearly equal and are roughly 2000 times the mass of the electron. Over 99.9% of the mass

of any atom is concentrated in its nucleus.

The negative charge of the electron has (within experimental error) exactly the same magnitude as the

positive charge of the proton. In a neutral atom the number of electrons equals the number of protons in the

nucleus, and the net electric charge (the algebraic sum of all the charges) is exactly zero (see the next Figure

a). The number of protons or electrons in a neutral atom of an element is called the atomic number of the

element. If one or more electrons are removed from an atom, what remains is called a positive ion (Fig. b).

A negative ion is an atom that has gained one or more electrons (Fig. c). This gain or loss of electrons is

called ionization.

When the total number of protons in a macroscopic body equals the total number of electrons, the total

charge is zero and the body as a whole is electrically neutral. To give a body an excess negative charge, we

may either add negative charges to a neutral body or remove positive charges from that body. Similarly, we

can create an excess positive charge by either adding positive charge or removing negative charge.



In most cases, negatively charged (and highly mobile) electrons are added or removed, and a “positively

charged body” is one that has lost some of its normal complement of electrons. When we speak of the

charge of a body, we always mean its net charge. The net charge is always a very small fraction (typically

no more than 10–12) of the total positive charge or negative charge in the body.

(a) A neutral atom has as

many electrons as it does

protons. (b) A positive ion

has a deficit of electrons.

(c) A negative ion has an

excess of electrons. (The

electron “shells” are a

schematic representation

of the actual electron

distribution, a diffuse

cloud many times larger

than the nucleus.)



Electric charge is conserved

Implicit in the foregoing discussion are two very important principles. First is the principle of

conservation of charge:

If we rub together a plastic rod and a piece of fur, both initially uncharged, the rod acquires a negative

charge (since it takes electrons from the fur) and the fur acquires a positive charge of the same magnitude

(since it has lost as many electrons as the rod has gained). Hence the total electric charge on the two bodies

together does not change. In any charging process, charge is not created or destroyed; it is merely

transferred from one body to another.

Conservation of charge is thought to be a universal conservation law. No experimental evidence for any

violation of this principle has ever been observed. Even in high-energy interactions in which particles are

created and destroyed, such as the creation of electron–positron pairs, the total charge of any closed system

is exactly constant.

The second important principle is:

Every observable amount of electric charge is always an integer multiple of this basic unit. We say that

charge is quantized. A familiar example of quantization is money. When you pay cash for an item in a

store, you have to do it in one-cent increments.



Cash can’t be divided into amounts smaller than one cent, and

electric charge can’t be divided into amounts smaller than the

charge of one electron or proton. (The quark charges, ± 1/3

and ± 2/3 of the electron charge, are probably not observable

as isolated charges.) Thus the charge on any macroscopic

body is always zero or an integer multiple (negative or

positive) of the electron charge.

Understanding the electric nature of matter gives us insight

into many aspects of the physical world (see the Figure). The

chemical bonds that hold atoms together to form molecules

are due to electric interactions between the atoms. They

include the strong ionic bonds that hold sodium and chlorine

atoms together to make table salt and the relatively weak

bonds between the strands of DNA that record your body’s

genetic code. When you stand, the normal force exerted on

you by the floor arises from electric forces between charged

particles in the atoms of your shoes and the atoms of the floor.

The tension force in a stretched string and the adhesive force

of glue are likewise due to electric interactions of atoms.

Most of the forces on this water skier are

electric. Electric interactions between

adjacent molecules give rise to the force of

the water on the ski, the tension in the tow

rope, and the resistance of the air on the

skier’s body. Electric interactions also hold

the atoms of the skier’s body together. Only

one wholly nonelectric force acts on the

skier: the force of gravity.



Coulomb’s law

Charles Augustin de Coulomb (1736–1806) studied the interaction forces of charged particles in detail in

1784. He used a torsion balance (see the Figure a) similar to the one used 13 years later by Cavendish to

study the much weaker gravitational interaction. For point charges, charged bodies that are very small in

comparison with the distance r between them, Coulomb found that the electric force is proportional to 1/r2.

That is, when the distance r doubles, the force decreases to one-quarter of its initial value; when the distance

is halved, the force increases to four times its initial value.

The electric force between two point charges also depends on the quantity of charge on each body, which we

will denote by q or Q. To explore this dependence, Coulomb divided a charge into two equal parts by placing

a small charged spherical conductor into contact with an identical but uncharged sphere; by symmetry, the

charge is shared equally between the two spheres. (Note the essential role of the principle of conservation of

charge in this procedure.) Thus he could obtain one-half, one-quarter, and so on, of any initial charge. He

found that the forces that two point charges q1 and q2 exert on each other are proportional to each charge and

therefore are proportional to the product q1q2 of the two charges.

Thus Coulomb established what we now call Coulomb’s law:



In mathematical terms, the magnitude F of the force that each of two point charges q1 and q2 a distance r

apart exerts on the other can be expressed as

(a) Measuring the electric force between point

charges. (b) The electric forces between point

charges obey Newton’s third law: F1 on 2 = −F2 on 1.

where k is a proportionality constant

whose numerical value depends on

the system of units used. The

absolute value bars are used in the

Equation of Coulomb’s law because

the charges q1 and q2 can be either

positive or negative, while the force

magnitude F is always positive.

The directions of the forces the two

charges exert on each other are

always along the line joining them.

When the charges q1 and q2 have the

same sign, either both positive or

both negative, the forces are

repulsive; when the charges have

opposite signs, the forces are

attractive (Fig. b).



The two forces obey Newton’s third law; they are always equal in magnitude and opposite in direction, even

when the charges are not equal in magnitude.

The proportionality of the electric force to 1/r2 has been verified with great precision. There is no reason to

suspect that the exponent is different from precisely 2. Thus the form of Coulomb’s law Equation is the same

as that of the law of gravitation. But electric and gravitational interactions are two distinct classes of

phenomena. Electric interactions depend on electric charges and can be either attractive or repulsive, while

gravitational interactions depend on mass and are always attractive (because there is no such thing as

negative mass).
Fundamental electric constants

The value of the proportionality constant k in Coulomb’s law depends on the system of units used. In our

study of electricity and magnetism we will use SI units exclusively. The SI electric units include most of the

familiar units such as the volt, the ampere, the ohm, and the watt. (There is no British system of electric

units.) The SI unit of electric charge is called one coulomb (1 C). In SI units the constant k in the Equation

of Coulomb’s law is

The value of k is known to such a large number of significant figures because this value is closely related to

the speed of light in vacuum. (We will show this later when we study electromagnetic radiation.) As you all

know, this speed is defined to be exactly c = 2.99792458 × 108 m/s. The numerical value of k is defined in

terms of c to be precisely



You should check this expression to confirm that k has the right units.

In principle we can measure the electric force F between two equal charges q at a measured distance r and

use Coulomb’s law to determine the charge. Thus we could regard the value of k as an operational definition

of the coulomb. For reasons of experimental precision it is better to define the coulomb instead in terms of a

unit of electric current (charge per unit time), the ampere, equal to 1 coulomb per second. We will return to

this definition later.

In SI units we usually write the constant k as 1/4ε0, where ε0 (“epsilon-nought” or “epsilon-zero”) is called

the electric constant. This shorthand simplifies many formulas that we will encounter in later chapters.

From now on, we will usually write Coulomb’s law as

The constants in this Equation are approximately

In problems we will often use the approximate value



As we mentioned above, the most fundamental unit of charge is the magnitude of the charge of an electron or

a proton, which is denoted by e. From the 2019 redefinition of SI base units, which took effect on 20 May

2019, its value is exactly

1.602176634×10−19 C.

One coulomb represents the negative of the total charge of about 6 × 1018 electrons. For comparison, a

copper cube 1 cm on a side contains about 2.4 × 1024 electrons. About 1019 electrons pass through the

glowing filament of a flashlight bulb every second.

In electrostatics problems (problems that involve charges at rest), it’s very unusual to encounter charges as

large as 1 coulomb. Two 1-C charges separated by 1 m would exert forces on each other of magnitude 9 ×

109 N (about 1 million tons)! The total charge of all the electrons in a copper one-cent coin is even greater,

about 1.4 × 105 C, which shows that we can’t disturb electric neutrality very much without using enormous

forces. More typical values of charge range from about a microcoulomb (1 μC = 10–6 C) to about a

nanocoulomb (1 nC = 10–9 C).

Superposition of forces

Coulomb’s law as we have stated it describes only the interaction of two point charges. Experiments show

that when two charges exert forces simultaneously on a third charge, the total force acting on that charge is

the vector sum of the forces that the two charges would exert individually. This important property, called the

principle of superposition of forces, holds for any number of charges.



By using this principle, we can apply Coulomb’s law to any collection of charges. Two of the examples at the

end of this section use the superposition principle.

Strictly speaking, Coulomb’s law as we have stated it should be used only for point charges in a vacuum. If

matter is present in the space between the charges, the net force acting on each charge is altered because

charges are induced in the molecules of the intervening material. We will describe this effect later. As a

practical matter, though, we can use Coulomb’s law unaltered for point charges in air. At normal atmospheric

pressure, the presence of air changes the electric force from its vacuum value by only about one part in 2000.

Electric field and electric forces
When two electrically charged particles in empty space interact, how does each one know the other is there?

We can begin to answer this question, and at the same time reformulate Coulomb’s law in a very useful way,

by using the concept of electric field. electric field

To introduce this concept, let’s look at the mutual repulsion of two positively charged bodies A and B (see the

Figure a). Suppose B has charge q0, and let F0 be the electric force of A on B. One way to think about this

force is as an “actionat-a-distance” force – that is, as a force that acts across empty space without needing

physical contact between A and B. (Gravity can also be thought of as an “action-at-a-distance” force.) But a

more fruitful way to visualize the repulsion between A and B is as a two-stage process. We first envision that

body A, as a result of the charge that it carries, somehow modifies the properties of the space around it. Then

body B, as a result of the charge that it carries, senses how space has been modified at its position. The

response of body B is to experience the force F0.



A charged body creates an electric

field in the space around it.

To find out experimentally whether there is an electric field at a

particular point, we place a small charged body, which we call a test

charge, at the point (Fig. c). If the test charge experiences an electric

force, then there is an electric field at that point. This field is produced by

charges other than q0.

Force is a vector quantity, so electric field is also a vector quantity. (Note

the use of vector signs as well as boldface letters and plus, minus, and

equals signs in the following discussion.) We define the electric field E at

a point as the electric force F0 experienced by a test charge q0 at the

point, divided by the charge q0. That is, the electric field at a certain point

is equal to the electric force per unit charge experienced by a charge at

that point:

In SI units, in which the unit of force is 1 N and the unit of charge is 1

C, the unit of electric-field magnitude is 1 newton per coulomb (1 N/C).



If the field E at a certain point is known, rearranging the Equation gives the force F0 experienced

by a point charge q0 placed at that point. This force is just equal to the electric field E produced at

that point by charges other than q0, multiplied by the charge q0:

The force F0 = q0E exerted on a point

charge q0 placed in an electric field E

The charge q0 can be either positive or negative. If q0 is

positive, the force F0 experienced by the charge is in the

same direction as E; if q0 is negative, F0 and E are in

opposite directions (see the Figure).

Caution! F0 = q0E is for point test charges only The

electric force experienced by a test charge q0 can vary from

point to point, so the electric field can also be different at

different points. For this reason, use the Equation to find

the electric force on a point charge only. If a charged body

is large enough in size, the electric field E may be

noticeably different in magnitude and direction at different

points on the body, and calculating the net electric force on

it can be complicated.



While the electric field concept may be new to you, the basic idea – that one body sets up a field in the

space around it and a second body responds to that field – is one that you’ve actually used before. Compare

the last Equation to the familiar expression for the gravitational force Fg that the earth exerts on a mass m0:

In this expression, g is the acceleration due to gravity. If we divide both sides of this Equation by the mass

m0, we obtain

Thus g can be regarded as the gravitational force per unit mass. By analogy to the electric field E, we can

interpret g as the gravitational field. Thus we treat the gravitational interaction between the earth and the

mass m0 as a two-stage process: The earth sets up a gravitational field g in the space around it, and this

gravitational field exerts a force on the mass m0 (which we can regard as a test mass). The gravitational field

g, or gravitational force per unit mass, is a useful concept because it does not depend on the mass of the

body on which the gravitational force is exerted; likewise, the electric field E, or electric force per unit

charge, is useful because it does not depend on the charge of the body on which the electric force is exerted.

Electric field of a point charge



The electric field E produced at point P by an isolated point charge q at S. Note that in both (b) and (c), E is produced by

q but acts on the charge q0 at point P.

So the magnitude E of the electric field at P is



We have emphasized calculating the electric field E at a certain point. But since E can vary from point to

point, it is not a single vector quantity but rather an infinite set of vector quantities, one associated with each

point in space. This is an example of a vector field. The next Figure shows a number of the field vectors

produced by a positive or negative point charge. If we use a rectangular (x, y, z) coordinate system, each

component of E at any point is in general a function of the coordinates (x, y, z) of the point. We can

represent the functions as Ex(x, y, z), Ey(x, y, z), and Ez(x, y, z). Another example of a vector field is the

velocity v of wind currents; the magnitude and direction of v, and hence its vector components, vary from

point to point in the atmosphere.

In some situations the magnitude and direction of the field (and hence its vector components) have the same

values everywhere throughout a certain region; we then say that the field is uniform in this region. An

important example of this is the electric field inside a conductor. If there is an electric field within a

conductor, the field exerts a force on every charge in the conductor, giving the free charges a net motion.



By definition an electrostatic situation is one in which the charges

have no net motion. We conclude that in electrostatics the electric

field at every point within the material of a conductor must be zero.

(Note that we are not saying that the field is necessarily zero in a hole

inside a conductor.)

In summary, our description of electric interactions has two parts.

First, a given charge distribution acts as a source of electric field.

Second, the electric field exerts a force on any charge that is present

in the field. Our analysis often has two corresponding steps: first,

calculating the field caused by a source charge distribution; second,

looking at the effect of the field in terms of force and motion. The

second step often involves Newton’s laws as well as the principles of

electric interactions. In the next section we show how to calculate

fields caused by various source distributions, but first here are three

examples of calculating the field due to a point charge and of finding

the force on a charge due to a given field E.

A point charge q produces an electric field E at all points in

space. The field strength decreases with increasing distance.



The superposition of electric fields

To find the field caused by a charge distribution, we imagine the distribution to be made up of many point

charges q1, q2, q3, …. (This is actually quite a realistic description, since we have seen that charge is carried

by electrons and protons that are so small as to be almost pointlike.) At any given point P, each point charge

produces its own electric field E1, E2, E3, …, so a test charge q0 placed at P experiences a force F1 = q0E1

from charge q1, a force F2 = q0E2 from charge q2, and so on. From the principle of superposition of forces

discussed above, the total force F0 that the charge distribution exerts on q0 is the vector sum of these

individual forces:

The combined effect of all the charges in the distribution is

described by the total electric field E at point P. From the

definition of electric field, this is

Illustrating the principle of superposition

of electric fields.

The total electric field at P is the vector sum of the fields at P

due to each point charge in the charge distribution (see the

Figure). This statement is the principle of superposition of

electric fields.

When charge is distributed along a line, over a surface, or

through a volume, a few additional terms are useful.



For a line charge distribution (such as a long, thin, charged plastic rod), we use λ (the Greek letter

lambda) to represent the linear charge density (charge per unit length, measured in C/m). When

charge is distributed over a surface (such as the surface of the imaging drum of a laser printer), we

use σ (sigma) to represent the surface charge density (charge per unit area, measured in C/m2).

And when charge is distributed through a volume, we use ρ (rho) to represent the volume charge

density (charge per unit volume, C/m3).

When students were given a problem involving electric force and electric field, more than 28%

gave an incorrect response. Common errors:

● Forgetting that the electric field E experienced by a point charge does not depend on the value of

that point charge. The value of E is determined by the charges that produce the field, not the

charge that experiences it.

● Forgetting that E is a vector. If the field E at point P is due to two or more point charges, E is

the vector sum of the fields due to the individual charges. In general, this is not the sum of the

magnitudes of these fields.



Electric field lines

The concept of an electric field can be a little elusive because you can’t

see an electric field directly. Electric field lines can be a big help for

visualizing electric fields and making them seem more real. An electric

field line is an imaginary line or curve drawn through a region of space

so that its tangent at any point is in the direction of the electric-field

vector at that point. The Figure shows the basic idea. (We used a similar

concept in our discussion of fluid flow in previous Section of our

lectures. A streamline is a line or curve whose tangent at any point is in

the direction of the velocity of the fluid at that point. However, the

similarity between electric field lines and fluid streamlines is a

mathematical one only; there is nothing “flowing” in an electric field.)

The English scientist Michael Faraday (1791–1867) first introduced the concept of field lines. He called

them “lines of force,” but the term “field lines” is preferable.

Electric field lines show the direction of E at each point, and their spacing gives a general idea of the

magnitude of E at each point. Where E is strong, we draw lines close together; where E is weaker, they are

farther apart. At any particular point, the electric field has a unique direction, so only one field line can pass

through each point of the field. In other words, field lines never intersect.

The direction of the electric

field at any point is tangent to

the field line through that point.



The Figure shows some of the electric field lines in a plane containing (a) a single positive charge; (b) two

equal-magnitude charges, one positive and one negative (a dipole); and (c) two equal positive charges. Such

diagrams are called field maps; they are cross sections of the actual three-dimensional patterns. The direction

of the total electric field at every point in each diagram is along the tangent to the electric field line passing

through the point. Arrowheads indicate the direction of the E-field vector along each field line.

Electric field lines for three different charge distributions. In general, the magnitude of E is different at different points

along a given field line.



The actual field vectors have been drawn at several points in each pattern. Notice that in general, the

magnitude of the electric field is different at different points on a given field line; a field line is not a curve of

constant electric-field magnitude!

The Figure shows that field lines are directed away from positive charges (since close to a positive point

charge, E points away from the charge) and toward negative charges (since close to a negative point charge,

E points toward the charge). In regions where the field magnitude is large, such as between the positive and

negative charges in Fig. b, the field lines are drawn close together. In regions where the field magnitude is

small, such as between the two positive charges in Fig. c, the lines are widely separated. In a uniform field,

the field lines are straight, parallel, and uniformly spaced.

Electric potential
This section is about energy associated with electrical interactions. Every time you turn on a light, use a

mobile phone, or make toast in a toaster, you are using electrical energy, an indispensable ingredient of our

technological society. The concepts of work and energy was introduced in the context of mechanics; now

we’ll combine these concepts with what we’ve learned about electric charge, electric forces, and electric

fields. Just as we found for many problems in mechanics, using energy ideas makes it easier to solve a

variety of problems in electricity.

When a charged particle moves in an electric field, the field exerts a force that can do work on the particle.

This work can be expressed in terms of electric potential energy.



Just as gravitational potential energy depends on the height of a mass above the earth’s surface, electric

potential energy depends on the position of the charged particle in the electric field. We’ll use a new concept

called electric potential, or simply potential, to describe electric potential energy. In circuits, a difference in

potential from one point to another is often called voltage. The concepts of potential and voltage are crucial

to understanding how electric circuits work and have equally important applications to electron beams used

in cancer radiotherapy, high-energy particle accelerators, and many other devices.

Electric potential energy
The concepts of work, potential energy, and conservation of energy proved to be extremely useful in our

study of mechanics. In this section we’ll show that these concepts are just as useful for understanding and

analyzing electrical interactions. Let’s begin by reviewing three essential points from mechanics. First, when

a force F acts on a particle that moves from point a to point b, the work Wa→b done by the force is given by a

line integral:

where dl is an infinitesimal displacement along the particle’s path and ϕ is the angle between vectors F and

dl at each point along the path.

Second, if the force F is conservative, the work done by F can always be expressed in terms of a potential

energy U. When the particle moves from a point where the potential energy is Ua to a point where it is Ub,

the change in potential energy is ∆U = Ub – Ua and



When Wa→b is positive, Ua is greater than Ub, ∆U is negative, and the

potential energy decreases. That’s what happens when a baseball falls

from a high point (a) to a lower point (b) under the influence of the

earth’s gravity; the force of gravity does positive work, and the

gravitational potential energy decreases (see the Figure). When a

tossed ball is moving upward, the gravitational force does negative

work during the ascent, and the potential energy increases.

Third, the work–energy theorem says that the change in kinetic

energy ∆K = Kb – Ka during a displacement equals the total work

done on the particle. If only conservative forces do work, then the

Equation gives the total work, and Kb – Ka = – (Ub – Ua). We usually

write this as

Ka + Ua = Kb + Ub

That is, the total mechanical energy (kinetic plus potential) is

conserved under these circumstances.

The work done on a baseball moving

in a uniform gravitational field.



It can be shown that the work of the electric field force when the charge moves in

it does not depend on the path, but depends only on the initial (a) and final

position (b) of the charge. Thus the electric force is really a conservative force.

Electric potential energy of two point charges can be written as

Graphs of the potential energy U of two point charges q and q0 versus their separation r.

The Equation is valid no matter what the signs of the charges q and q0. The

potential energy is positive if the charges q and q0 have the same sign (see the

Figure a) and negative if they have opposite signs (Fig. b).

Potential energy is always defined relative to some reference point where U = 0.

In the Equation, U is zero when q and q0 are infinitely far apart and r = ∞.

Therefore U represents the work that would be done on the test charge q0 by the

field of q if q0 moved from an initial distance r to infinity. If q and q0 have the

same sign, the interaction is repulsive, this work is positive, and U is positive at

any finite separation (Fig. a). If the charges have opposite signs, the interaction is

attractive, the work done is negative, and U is negative (Fig. b).



We emphasize that the potential energy U given by the Equation is a shared property of the two charges. If

the distance between q and q0 is changed from ra to rb, the change in potential energy is the same whether q

is held fixed and q0 is moved or q0 is held fixed and q is moved. For this reason, we never use the phrase “the

electric potential energy of a point charge.” (Likewise, if a mass m is at a height h above the earth’s surface,

the gravitational potential energy is a shared property of the mass m and the earth.)

Interpreting electric potential energy

As a final comment, here are two viewpoints on electric potential energy. We have defined it in terms of the

work done by the electric field on a charged particle moving in the field, just as in earlier we defined

potential energy in terms of the work done by gravity or by a spring. When a particle moves from point a to

point b, the work done on it by the electric field is Wa→b = Ua – Ub. Thus the potential-energy difference Ua –

Ub equals the work that is done by the electric force when the particle moves from a to b. When Ua is greater

than Ub, the field does positive work on the particle as it “falls” from a point of higher potential energy (a) to

a point of lower potential energy (b).

An alternative but equivalent viewpoint is to consider how much work we would have to do to “raise” a

particle from a point b where the potential energy is Ub to a point a where it has a greater value Ua (pushing

two positive charges closer together, for example). To move the particle slowly (so as not to give it any

kinetic energy), we need to exert an additional external force Fext that is equal and opposite to the electric-

field force and does positive work. The potentialenergy difference Ua – Ub is then defined as the work that

must be done by an external force to move the particle slowly from b to a against the electric force.



Because Fext is the negative of the electric-field force and the displacement is in the opposite direction, this

definition of the potential difference Ua – Ub is equivalent to that given above. This alternative viewpoint

also works if Ua is less than Ub, corresponding to “lowering” the particle; an example is moving two positive

charges away from each other. In this case, Ua – Ub is again equal to the work done by the external force, but

now this work is negative.

We will use both of these viewpoints in the next section to interpret what is meant by electric potential, or

potential energy per unit charge.
Electric potential

In previous section we looked at the potential energy U associated with a test charge q0 in an electric field.

Now we want to describe this potential energy on a “per unit charge” basis, just as electric field describes the

force per unit charge on a charged particle in the field. This leads us to the concept of electric potential, often

called simply potential. This concept is very useful in calculations involving energies of charged particles. It

also facilitates many electric-field calculations because electric potential is closely related to the electric field

E. When we need to determine an electric field, it is often easier to determine the potential first and then find

the field from it.

Potential is potential energy per unit charge. We define the potential V at any point in an electric field as the

potential energy U per unit charge associated with a test charge q0 at that point:



Potential energy and charge are both scalars, so potential is a scalar. From this Equation its units are the units

of energy divided by those of charge. The SI unit of potential, called one volt (1 V) in honor of the Italian

electrical experimenter Alessandro Volta (1745–1827), equals 1 joule per coulomb:

1 V = 1 volt = 1 J/C = 1 joule/coulomb 

Let’s put the Equation Wa→b = Ua – Ub = – (Ub – Ua) = –∆U, which equates the work done by the electric

force during a displacement from a to b to the quantity –∆U = – (Ub – Ua), on a “work per unit charge” basis.

We divide this equation by q0, obtaining

where Va = Ua/q0 is the potential energy per unit charge at point a and similarly for Vb. We call Va and Vb the

potential at point a and potential at point b, respectively. Thus the work done per unit charge by the electric

force when a charged body moves from a to b is equal to the potential at a minus the potential at b.

The difference Va – Vb is called the potential of a with respect to b; we sometimes abbreviate this difference

as Vab = Va – Vb (note the order of the subscripts). This is often called the potential difference between a and

b, but that’s ambiguous unless we specify which is the reference point. In electric circuits, which we will

analyze in later chapters, the potential difference between two points is often called voltage (see the Figure

below). The last Equation then states: Vab, the potential (in V) of a with respect to b, equals the work (in

J) done by the electric force when a UNIT (1-C) charge moves from a to b.



where Va = Ua/q0 is the potential energy per unit charge at point a and

similarly for Vb. We call Va and Vb the potential at point a and potential at

point b, respectively. Thus the work done per unit charge by the electric

force when a charged body moves from a to b is equal to the potential at a

minus the potential at b.

The difference Va – Vb is called the potential of a with respect to b; we

sometimes abbreviate this difference as Vab = Va – Vb (note the order of the

subscripts). This is often called the potential difference between a and b,

but that’s ambiguous unless we specify which is the reference point. In

electric circuits, which we will analyze in later chapters, the potential

difference between two points is often called voltage (see the Figure).

The last Equation then states: Vab, the potential (in V) of a with respect

to b, equals the work (in J) done by the electric force when a UNIT

(1-C) charge moves from a to b.

The voltage of this battery equals the

difference in potential Vab = Va – Vb

between its positive terminal (point

a) and its negative terminal (point b).

Calculating electric potential due to a point charge

To find the potential V due to a single point charge q, we divide the Eq. for potential energy U by q0:



If q is positive, the potential that it produces is positive at all points; if q is negative, it produces a potential that

is negative everywhere. In either case, V is equal to zero at r = ∞, an infinite distance from the point charge.

Note that potential, like electric field, is independent of the test charge q0 that we use to define it.

Field lines help us visualize electric fields. In a similar way, the potential

at various points in an electric field can be represented graphically by

equipotential surfaces. These use the same fundamental idea as

topographic maps like those used by hikers and mountain climbers (see

the Figure). On a topographic map, contour lines are drawn through

points that are all at the same elevation. Any number of these could be

drawn, but typically only a few contour lines are shown at equal

spacings of elevation. If a mass m is moved over the terrain along such a

contour line, the gravitational potential energy mgy does not change

because the elevation y is constant. Thus contour lines on a topographic

map are really curves of constant gravitational potential energy. Contour

lines are close together where the terrain is steep and there are large

changes in elevation over a small horizontal distance; the contour lines

are farther apart where the terrain is gently sloping. A ball allowed to

roll downhill will experience the greatest downhill gravitational force

where contour lines are closest together.

Equipotential surfaces

Contour lines on a topographic map are

curves of constant elevation and hence of

constant gravitational potential energy.



By analogy to contour lines on a topographic map, an equipotential surface is a three-dimensional surface

on which the electric potential V is the same at every point. If a test charge q0 is moved from point to point on

such a surface, the electric potential energy q0V remains constant. In a region where an electric field is

present, we can construct an equipotential surface through any point. In diagrams we usually show only a few

representative equipotentials, often with equal potential differences between adjacent surfaces. No point can

be at two different potentials, so equipotential surfaces for different potentials can never touch or intersect.

Equipotential surfaces and field lines

Because potential energy does not change as a test charge moves over an equipotential surface, the electric

field can do no work on such a charge. It follows that E must be perpendicular to the surface at every point so

that the electric force q0E is always perpendicular to the displacement of a charge moving on the surface.

Field lines and equipotential surfaces are always mutually perpendicular. In general, field lines are

curves, and equipotentials are curved surfaces. For the special case of a uniform field, in which the field lines

are straight, parallel, and equally spaced, the equipotentials are parallel planes perpendicular to the field lines.

The Figure shows three arrangements of charges. The field lines in the plane of the charges are represented by

red lines, and the intersections of the equipotential surfaces with this plane (that is, cross sections of these

surfaces) are shown as blue lines. The actual equipotential surfaces are three-dimensional. At each crossing of

an equipotential and a field line, the two are perpendicular.

In the Figure we have drawn equipotentials so that there are equal potential differences between adjacent

surfaces.



Cross sections of equipotential surfaces (blue lines) and electric field lines (red lines) for assemblies of point charges.

There are equal potential differences between adjacent surfaces.

In regions where the magnitude of E is large, the equipotential surfaces are close together because the field

does a relatively large amount of work on a test charge in a relatively small displacement. This is the case

near the point charge in Fig. a or between the two point charges in Fig. b; note that in these regions the field

lines are also closer together. This is directly analogous to the downhill force of gravity being greatest in

regions on a topographic map where contour lines are close together.



Conversely, in regions where the field is weaker, the equipotential surfaces are farther apart; this happens at

larger radii in Fig. a, to the left of the negative charge or the right of the positive charge in Fig. b, and at

greater distances from both charges in Fig. c. (It may appear that two equipotential surfaces intersect at the

center of Fig. c, in violation of the rule that this can never happen. In fact this is a single figure-8–shaped

equipotential surface.)

Pay attention: E need not be constant over an equipotential surface! On a given equipotential surface, the

potential V has the same value at every point. In general, however, the electricfield magnitude E is not the

same at all points on an equipotential surface. For instance, on equipotential surface “V = –30 V” in Fig. b, E

is less to the left of the negative charge than it is between the two charges. On the figure-8–shaped

equipotential surface in Fig. c, E = 0 at the middle point halfway between the two charges; at any other point

on this surface, E is nonzero.

Finding electric potential from electric field

The force F on a test charge q0 can be written as F = q0E, so the work done by the electric force as the test

charge moves from a to b is given by

If we divide this by q0, we find



The Equation can be rewritten as

This has a negative sign compared to the integral in previous Equation, and the limits are

reversed; hence both these Equations are equivalent.

If we know E as a function of position, we can calculate V from these Equations.

These Equations show that the unit of potential difference (1 V) is equal to the unit of electric

field (1 N/C) multiplied by the unit of distance (1 m). Hence the unit of electric field can be

expressed as 1 volt per meter (1 V/m), as well as 1 N/C:

1 V/m = 1 volt/meter = 1 N/C = 1 newton/coulomb 

In practice, the volt per meter is the usual unit of electric-field magnitude.



Potential gradient
Electric field and potential are closely related. Let's look at the Equation, restated here:

In the Equation, Va – Vb is the potential of a with respect to b – that is, the

change of potential encountered on a trip from b to a. We can write this as

where dV is the infinitesimal change of potential accompanying an

infinitesimal element dl of the path from b to a. So, we have







This agrees with our early observation that moving in the direction of the electric field means moving in the

direction of decreasing potential. The Equation above doesn’t depend on the particular choice of the zero

point for V. If we were to change the zero point, the effect would be to change V at every point by the same

amount; the derivatives of V would be the same. If E has a radial component Er with respect to a point or an

axis and r is the distance from the point or axis, the relationship corresponding to located above Equations is

Often we can compute the electric field caused by a charge distribution in either of two ways: directly, by

adding the E fields of point charges, or by first calculating the potential and then taking its gradient to find

the field. The second method is often easier because potential is a scalar quantity, requiring at worst the

integration of a scalar function. Electric field is a vector quantity, requiring computation of components for

each element of charge and a separate integration for each component. Thus, quite apart from its

fundamental significance, potential offers a very useful computational technique in field calculations. If we

know V as a function of position, we can calculate E from these Eqs. Deriving V from E requires

integration, and deriving E from V requires differentiation.



Example: Potential gradient across a cell membrane

The interior of a human cell is at a lower electric

potential V than the exterior. (The potential difference

when the cell is inactive is about – 70 mV in neurons

and about – 95 mV in skeletal muscle cells.) Hence

there is a potential gradient ∇ V that points from the

interior to the exterior of the cell membrane, and an

electric field E = – ∇ V that points from the exterior to

the interior. This field affects how ions flow into or

out of the cell through special channels in the

membrane.

So far, we have considered the electric field in a vacuum. Any medium reduces the effect of the electric field

on the charge placed in it by a factor of ε (this reduces the value of the electric field E and the potential V.)

The value ε is called the permittivity and has its own value for various substances. For example, the

formulas for the field and potential at a distance r from the point charge q that creates the field have the

form:
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Electric field in the medium






