
Electric dipoles
An electric dipole is a pair of point charges with equal magnitude and opposite sign (a positive charge q and a

negative charge –q) separated by a distance d. Many physical systems, from molecules to TV antennas, can be

described as electric dipoles.

Figure shows a molecule of water (H2O), which in many ways behaves like an electric dipole. The water

molecule as a whole is electrically neutral, but the chemical bonds within the molecule cause a displacement

of charge; the result is a net negative charge on the oxygen end of the molecule and a net positive charge on

the hydrogen end, forming an electric dipole. The effect is equivalent to shifting one electron only about 4 ×

10–11 m (about the radius of a hydrogen atom), but the consequences of this shift are profound.

Water is an excellent solvent for ionic substances such as table salt (sodium

chloride, NaCl) precisely because the water molecule is an electric dipole.

When dissolved in water, salt dissociates into a positive sodium ion (Na+)

and a negative chlorine ion (Cl–), which tend to be attracted to the negative

and positive ends, respectively, of water molecules; this holds the ions in

solution. If water molecules were not electric dipoles, water would be a poor

solvent, and almost all of the chemistry that occurs in aqueous solutions

would be impossible. This includes all of the biochemical reactions that

occur in all of the life on earth. In a very real sense, your existence as a

living being depends on electric dipoles! A water molecule, showing positive charge as red and negative charge as blue. So a water molecule

is an example of an electric dipole. The large electric dipole moment of water makes it an excellent

solvent.



We examine two questions about electric dipoles. First, what forces and torques does an electric dipole

experience when placed in an external electric field (that is, a field set up by charges outside the dipole)?

Second, what electric field does an electric dipole itself produce? These two situations reveal, respectively,

the passive and active properties of the dipole.

Force and torque on an electric dipole

The net force on this electric dipole is

zero, but there is a torque directed into

the page that tends to rotate the dipole

clockwise.

To start with the first question, let’s place an electric dipole in a uniform external electric field E, as shown

in Figure. Both forces F+ and F– on the two charges have magnitude qE, but their directions are opposite,

and they add to zero. The net force on an electric dipole in a uniform external electric field is zero.

However, the two forces don’t act along the same line, so their

torques don’t add to zero. We calculate torques with respect to the

center of the dipole. Let the angle between the electric field E and

the dipole axis be ϕ; then the lever arm for both F+ and F– is (d/2)

sinϕ. The torque of F+ and the torque of F– both have the same

magnitude of (qE)(d/2) sinϕ, and both torques tend to rotate the

dipole clockwise (that is, τ is directed into the page in Fig. 21.31).

Hence the magnitude of the net torque is twice the magnitude of

either individual torque:

τ = (qE)(d sinϕ), where d sinϕ is the perpendicular distance between

the lines of action of the two forces.



The product of the charge q and the separation d is the magnitude of a quantity called the electric dipole

moment, denoted by p: p = qd (magnitude of electric dipole moment)

The units of p are charge times distance (C · m). For example, the magnitude of the electric dipole moment of

a water molecule is p = 6.13 × 10–30 C · m.

Caution: the symbol p has multiple meanings. Do not confuse dipole moment with momentum or pressure.

There aren’t as many letters in the alphabet as there are physical quantities, so some letters are used several

times. The context usually makes it clear what we mean, but be careful.

We further define the electric dipole moment to be a vector quantity p. The magnitude of p is given by the

Equation above, and its direction is along the dipole axis from the negative charge to the positive charge as

shown in the Figure. In terms of p, Equation for the magnitude τ of the torque exerted by the field becomes

Since the angle ϕ in the Figure is the angle between the directions of the vectors p and E, this is reminiscent

of the expression for the magnitude of the vector product. Hence we can write the torque on the dipole in

vector form as



You can use the right-hand rule for the vector product to verify that in the situation shown in the Figure, τ

is directed into the page. The torque is greatest when p and E are perpendicular and is zero when they are

parallel or antiparallel. The torque always tends to turn p to line it up with E. The position ϕ = 0, with p

parallel to E, is a position of stable equilibrium, and the position ϕ = π, with p and E antiparallel, is a

position of unstable equilibrium.

Let's now consider a dipole in an inhomogeneous electric

field. Assume that the dipole is located along an electric field

line whose direction is opposite to the OX-axis (see figure).

On the dipole act forces

where Е+ and E– is the electric field, respectively, at the

location of the positive and negative charges (since the

density of the lines in Fig. on the left is greater than on the

right, then E– > Е+). The value of the net force:

Forces acting on a dipole in a non-uniform

electric field.

F = F– – F+= qE– – qЕ+ = q(E– – Е+).

This force will move the dipole to the left - pull it into the area of a stronger field. We introduce a relation

(E– – Е+)/d that characterizes the average change in the field value per unit length of the dipole. Since the

separation d is usually small, it can be approximated as

(E– – Е+)/d=dE/dx,



where dE/dx is the derivative of the field value in the direction of the OX axis, which is a measure of the

non-uniformity of the electric field along the corresponding direction. It follows from this equation that

,
dx

dE
dEE  

then the formula for force can be represented as

.
dx

dE
p

dx

dE
qdF 

So, the dipole is affected by a force that depends on its electric dipole moment and the degree of non-

uniformity of the field dE/dx.

Active properties of the dipole

So far, we have considered a dipole placed in an electric field, but the dipole

itself is the source of the field. Let's now consider some of the active

properties of the dipole.

Let's write an expression for the electric potential of the field created by the

dipole at some point A, distant from the charges at distances r and r1,

respectively (see the figure):
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Suppose that d << r, d << r1 then r ≈ r1 and

rr1 = r2 , r – r1 = dcosα,

where α is the angle between the vector p and the direction from the dipole to point A (see the Fig.). Thus,

we get the expression for the potential:
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Note here the result that the potential of a system of two charges (i.e., a dipole) is inversely proportional to r

in the second degree, V ~ 1/r2.

Let the dipole that creates the electric field be located in the center of an

equilateral triangle ABC (see the Figure). Using the above expression for

the potential, we can prove (we will not draw a complete conclusion here)

that the electric voltages on the sides of this triangle are related as

projections p on its sides:

UAB :UBC :UCA = pAB :pBC :pCA.

where each voltage is a difference of potentials:

UAB = VA – VB, 

and so on.



The concept of multipoles

a

b

c

A dipole is a special case of a system of electric charges that have a certain symmetry.

You can specify more examples of symmetric charge systems (see the Figure). The

general name of such charge distributions is electric multipoles. They are of different

orders (l= 0, 1, 2, etc.), the number of multipole charges is determined by the

expression N=2l. Thus, the multipole of order zero (20 = 1) is a single point charge –

monopole (Fig. a), a multipole of first order (21 = 2) is a dipole, a multipole of second

order (22 = 4) – quadrupole (Fig. b), multipole of third order (23 = 8) – octupole (Fig.

c), etc.

The potential of the multipole field decreases at significant distances from it (r >> d,

where d is the size of the multipole) proportionally to 1/rl+1. So, for the one charge (l =

0) V ~ 1/r (we proved this in the previous lecture), for the dipole (l = 1) V ~ 1/r2 (as we

have just proved), for a quadrupole (l = 2) V ~ 1/r3, etc.

If the charge is distributed in a certain area of space, then the potential of the electric

field outside the charge system can be represented as an approximate series:

Samples of multipoles:

(a) monopole, (b)

quadrupole, (c) octupole.
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Here r is the distance from the charge system to point A with potential V; f1, f2, f3 are some functions that

depend on the type of multipole, the values of its charges, and the direction to point A. The first term in this

formula corresponds to a monopole, the second to a dipole, the third to a quadrupole, and so on.

In the case of a neutral system of charges the first term is equal to zero.

If r is very large, then you can ignore all the terms of the series starting from the third. Then the potential of

this entire arbitrary system of charges can be approximated by the potential of the dipole.

Physical basis of electrocardiography

Living tissues are a source of electrical potentials (biopotentials.) Registration of tissue and organ

biopotentials for diagnostic (or research) purposes is called electrography. This general term is used

relatively rarely, more common are the specific names of the corresponding diagnostic methods:

electrocardiography (ECG or EKG) – registration of biopotentials that occur in the heart muscle when it is

excited, electromyography (EMG) – a method for registering the bioelectric activity of muscles,

electroencephalography – EEG) – a method for registering the bioelectric activity of the brain, etc.

In most cases, biopotentials are registered by electrodes not directly from the organ (heart, brain), but from

other "neighboring" tissues in which electric fields are created by this organ. In clinical terms, this greatly

simplifies the registration procedure itself, making it safe and simple. The physical approach to

electrography is to create (or select) a model of an electric generator that corresponds to the pattern of

registered potentials. In this regard, two fundamental theoretical problems arise here.



The direct problem is to calculate the potential in the measurement area based on the specified characteristics

of the electric generator (model).

The inverse problem is to calculate the characteristics of an electric generator based on the measured

potential.

Further specific consideration of physical issues of electrography will be done on the example of

electrocardiography. One of the main tasks of theoretical electrocardiography is to calculate the distribution of

the transmembrane potential of heart muscle cells by potentials measured outside the heart. However, even

theoretically, such an inverse problem cannot be solved, since the same external manifestation of heart

biopotentials can be at different internal distribution.

The physical (biophysical) approach to elucidating the relationship between heart biopotentials and their

external manifestation is to model the sources of these biopotentials. The whole heart is represented in

electrical terms as some equivalent electrical generator, either purely speculative (hypothetical), or as a real

device as a collection of electrical sources in a conductor that has the shape of a human body.

Applying considerations similar to those made above for multipoles and a system of arbitrarily distributed

charges for the heart, it can be shown that the electrical properties of the heart can be modeled, in the first

approximation, by representing the heart as a dipole. In other words, in the multipole equivalent generator of

the heart, the main part of the potential on the surface of the human body is introduced by its dipole

component.



Electrical axis of the heart

Electric dipole moment pc of a heart

and lines of equal values of

potential φ (V).

The dipole view of the heart is the basis of the theory of leads created

by Dutch physician and physiologist Willem Einthoven (1860 –1927).

According to it, the heart is a dipole with a dipole moment that

turns, changes its position and the point of application (changing the

point of application of this vector is often neglected) during the

cardiac cycle.

The Figure shows the positions of the vector p and equipotential lines

for the moment of time when the dipole moment is maximal; this

corresponds to the R wave on the electrocardiogram.

Einthoven proposed to measure the differences in heart biopotentials

between the vertices of an equilateral triangle, which are approximately

located in the right arm (RA, or ПР in Russian), left arm (LR or ЛР)

and left leg (LL or ЛН) (see the next figure a). As we said earlier, if the

triangle is equilateral and the heart is located in the center of the

triangle, then by finding the ratio of potential differences between the

vertices of the triangle, we will determine the relationship between the

projections of the electric moment of the heart on the sides of the

triangle, i.e. we will find the magnitude and direction of the vector p.

The Figure b schematically shows this triangle.



a

b Graphical representation of Einthoven's triangle



In the terminology of physiologists, the difference of biopotentials registered between two points of the

body is called a lead. Distinguish I lead (right shoulder – left shoulder), II lead (right shoulder – left leg)

and III lead (left shoulder – left leg). Since the electric moment of the dipole – the heart – changes with

time, the voltage dependences on time will be obtained in the leads, which are called electrocardiograms.

The registered voltages are typically no greater than 1 mV = 10–3 V.

Formation of limb 

waveforms during a pulse



In this section, we study the flow of electric charges through a piece of material. The amount of flow

depends on both the material through which the charges are passing and the potential difference across the

material. Whenever there is a net flow of charge through some region, an electric current is said to exist.

Electric current

It is instructive to draw an analogy between water flow and current. The

flow of water in a plumbing pipe can be quantified by specifying the

amount of water that emerges from a faucet during a given time interval,

often measured in liters per minute. A river current can be characterized by

describing the rate at which the water flows past a particular location. For

example, the flow over the brink at Niagara Falls is maintained at rates

between 1400 m3/s and 2800 m3/s.

To define current quantitatively, suppose charges are moving perpendicular

to a surface of area A as shown in the Figure. (This area could be the cross-

sectional area of a wire, for example.) The current is defined as the rate at

which charge flows through this surface. If ΔQ is the amount of charge that

passes through this surface in a time interval Δt, the average current Iavg is

equal to the charge that passes through A per unit time:

Charges in motion through an

area A. The time rate at which

charge flows through the area

is defined as the current I.



If the rate at which charge flows varies in time, the current varies in time; we define the instantaneous

current I as the limit of the average current as Δt → 0:

The SI unit of current is the ampere (A):

1 A = 1 C/s. 

That is, 1 A of current is equivalent to 1 C of charge passing through a surface in 1 s.

The charged particles passing through the surface in the Figure can be positive, negative, or both. It is

conventional to assign to the current the same direction as the flow of positive charge. In electrical

conductors such as copper or aluminum, the current results from the motion of negatively charged electrons.

Therefore, in an ordinary conductor, the direction of the current is opposite the direction of flow of electrons.

For a beam of positively charged protons in an accelerator, however, the current is in the direction of motion

of the protons. In some cases – such as those involving gases and electrolytes, for instance – the current is the

result of the flow of both positive and negative charges. It is common to refer to a moving charge (positive or

negative) as a mobile charge carrier.

If the ends of a conducting wire are connected to form a loop, all points on the loop are at the same electric

potential; hence, the electric field is zero within and at the surface of the conductor. Because the electric field

is zero, there is no net transport of charge through the wire; therefore, there is no current.



If the ends of the conducting wire are connected to a battery, however, all points on the loop are not at the

same potential. The battery sets up a potential difference between the ends of the loop, creating an electric

field within the wire. The electric field exerts forces on the electrons in the wire, causing them to move in

the wire and therefore creating a current.

Microscopic model of current

A segment of a uniform conductor

of cross-sectional area A.

We can relate current to the motion of the charge carriers by describing a microscopic model of conduction

in a metal. Consider the current in a cylindrical conductor of cross-sectional area A (see the Figure). The

volume of a segment of the conductor of length Δx (between the two circular cross sections shown in Fig.)

is AΔx. If n represents the number of mobile charge carriers per unit volume (in other words, the charge

carrier density), the number of carriers in the segment is nAΔx.

Therefore, the total charge ΔQ in this segment is

ΔQ = (nAΔx)q

where q is the charge on each carrier. If the carriers move with a velocity vd

parallel to the axis of the cylinder, the magnitude of the displacement they

experience in the x direction in a time interval Δt is Δx = vd Δt. Let Δt be the

time interval required for the charge carriers in the segment to move

through a displacement whose magnitude is equal to the length of the

segment.



This time interval is also the same as that required for all the charge carriers in the segment to pass through

the circular area at one end. With this choice, we can write ΔQ as

ΔQ = (nAvd Δt)q 

Dividing both sides of this equation by Δt, we find that the average current in the conductor is

In reality, the speed of the charge carriers vd is an

average speed called the drift speed. To understand

the meaning of drift speed, consider a conductor in

which the charge carriers are free electrons. If the

conductor is isolated – that is, the potential

difference across it is zero – these electrons undergo

random motion that is analogous to the motion of

gas molecules. The electrons collide repeatedly with

the metal atoms, and their resultant motion is

complicated and zigzagged as in Figure a.

ba



As discussed earlier, when a potential difference is applied across the conductor (for example, by means of a

battery), an electric field is set up in the conductor; this field exerts an electric force on the electrons, producing

a current. In addition to the zigzag motion due to the collisions with the metal atoms, the electrons move

slowly along the conductor (in a direction opposite that of E) at the drift velocity vd as shown in Figure b.

You can think of the atom–electron collisions in a conductor as an effective internal friction (or drag force)

similar to that experienced by a liquid’s molecules flowing through a pipe stuffed with steel wool. The energy

transferred from the electrons to the metal atoms during collisions causes an increase in the atom’s vibrational

energy and a corresponding increase in the conductor’s temperature.

Resistance
Consider a conductor of cross-sectional area A carrying a current I. The current density J in the conductor is

defined as the current per unit area. Because the current I = nqvdA, the current density is

where J has SI units of amperes per meter squared. This expression is valid only if the current density is

uniform and only if the surface of cross-sectional area A is perpendicular to the direction of the current. A

current density and an electric field are established in a conductor whenever a potential difference is

maintained across the conductor. In some materials, the current density is proportional to the electric field:

J = σE



where the constant of proportionality σ is called the conductivity of the conductor. Do not confuse

conductivity σ with surface charge density, for which the same symbol is used. Materials that obey the

Equation are said to follow Ohm’s law, named after Georg Simon Ohm. More specifically, Ohm’s law states

the following:

A uniform conductor of length ℓ and cross-

sectional area A.

Materials and devices that obey Ohm’s law and hence demonstrate this

simple relationship between E and J are said to be ohmic. Experimentally,

however, it is found that not all materials and devices have this property.

Those that do not obey Ohm’s law are said to be nonohmic. Ohm’s law is

not a fundamental law of nature; rather, it is an empirical relationship valid

only for certain situations. We can obtain an equation useful in practical

applications by considering a segment of straight wire of uniform cross-

sectional area A and length ℓ, as shown in the Figure. A potential difference

ΔV = Vb – Va is maintained across the wire, creating in the wire an electric

field and a current. If the field is assumed to be uniform, the magnitude of

the potential difference across the wire is related to the field within the wire,

as we said in the previous lecture,

ΔV = Eℓ, 



Therefore, we can express the current density in the wire as

Because J = I/A, the potential difference across the wire is

The quantity R = ℓ/σA is called the resistance of the conductor. We define the resistance as the ratio of the

potential difference across a conductor to the current in the conductor:

Many individuals call the last Equation Ohm’s law, but that is incorrect. This equation is simply the

definition of resistance, and it provides an important relationship between voltage, current, and resistance.

Ohm’s law is related to a proportionality of J to E or, equivalently, of I to ΔV, which, from the last Equation,

indicates that the resistance is constant, independent of the applied voltage. We can see some devices for

which the last Equation correctly describes their resistance, but that do not obey Ohm’s law.

This result shows that resistance has SI units of volts per ampere. One volt per ampere is defined to be one

ohm (Ω):



The last Equation shows that if a potential difference of 1 V across a conductor causes a current of 1 A, the

resistance of the conductor is 1 Ω. For example, if an electrical appliance connected to a 120-V source of

potential difference carries a current of 6 A, its resistance is 20 Ω.

Most electric circuits use circuit elements called resistors to control the current in the various parts of the

circuit. The many resistors are built into integrated circuit chips, but stand-alone resistors are still available

and widely used. Two common types are the composition resistor, which contains carbon, and the wire-

wound resistor, which consists of a coil of wire.

The inverse of conductivity is resistivity ρ (do not confuse resistivity ρ with mass density or charge density,

for which the same symbol is used):

where ρ has the units ohm · meters (Ω · m). Because R = ℓ/σA, we can express the resistance of a uniform

block of material along the length ℓ, as

Resistivity is a property of a substance, whereas resistance is a property of an object. We have seen similar

pairs of variables before. For example, density is a property of a substance, whereas mass is a property of an

object.



Every ohmic material has a characteristic resistivity that depends on the properties of the material and on

temperature. In addition, as you can see from the last Equation, the resistance of a sample of the material

depends on the geometry of the sample as well as on the resistivity of the material. The next Table gives the

resistivities of a variety of materials at 20°C. Notice the enormous range, from very low values for good

conductors such as copper and silver to very high values for good insulators such as glass and rubber. An ideal

conductor would have zero resistivity, and an ideal insulator would have infinite resistivity.

The next Equation shows that the resistance of a given cylindrical conductor such as a wire is proportional to its

length and inversely proportional to its cross-sectional area. If the length of a wire is doubled, its resistance

doubles. If its cross-sectional area is doubled, its resistance decreases by one half. The situation is analogous to

the flow of a liquid through a pipe. As the pipe’s length is increased, the resistance to flow increases. As the

pipe’s cross-sectional area is increased, more liquid crosses a given cross section of the pipe per unit time

interval. Therefore, more liquid flows for the same pressure differential applied to the pipe, and the resistance to

flow decreases.

Ohmic materials and devices have a linear current–potential difference relationship over a broad range of applied

potential differences (see the Figure a). The slope of the I-versus-ΔV curve in the linear region yields a value for

1/R. Nonohmic materials have a nonlinear current–potential difference relationship. One common

semiconducting device with nonlinear I-versus-ΔV characteristics is the junction diode (Fig. b). The resistance of

this device is low for currents in one direction (positive ΔV) and high for currents in the reverse direction

(negative ΔV). In fact, most modern electronic devices, such as transistors, have nonlinear current–potential

difference relationships; their proper operation depends on the particular way they violate Ohm’s law.



a

b

(a) The current–potential difference curve for

an ohmic material. The curve is linear, and the

slope is equal to the inverse of the resistance

of the conductor. (b) A nonlinear current–

potential difference curve for a junction diode.

This device does not obey Ohm’s law.

Resistivities and Temperature Coefficients of Resistivity for Various Materials



Resistance and Temperature

Over a limited temperature range, the resistivity of a conductor varies approximately linearly with

temperature according to the expression

where ρ is the resistivity at some temperature T (in Kelvins or degrees Celsius), ρ0 is the resistivity at some

reference temperature T0 (usually taken to be 20°C), and α is the temperature coefficient of resistivity.

From the Equation, the temperature coefficient of resistivity can be expressed as

where Δρ = ρ – ρ0 is the change in resistivity in the temperature interval ΔT = T – T0.

The temperature coefficients of resistivity for various materials are given in the previous Table. Notice that

the unit for α is degrees Celsius–1 [(°C)–1]. Because resistance is proportional to resistivity (see above), the

variation of resistance of a sample is

where R0 is the resistance at temperature T0. Use of this property enables precise temperature measurements

through careful monitoring of the resistance of a probe made from a particular material.

For some metals such as copper, resistivity is nearly proportional to temperature as shown in the Figure. A

nonlinear region always exists at very low temperatures, however, and the resistivity usually reaches some

finite value as the temperature approaches absolute zero.



This residual resistivity near absolute zero is caused primarily by the

collision of electrons with impurities and imperfections in the metal. In

contrast, high-temperature resistivity (the linear region) is

predominantly characterized by collisions between electrons and metal

atoms.

Notice that three of the α values in the Table above are negative,

indicating that the resistivity of these materials decreases with

increasing temperature. This behavior is indicative of a class of

materials called semiconductors, and is due to an increase in the

density of charge carriers at higher temperatures. Because the charge

carriers in a semiconductor are often associated with impurity atoms,

the resistivity of these materials is very sensitive to the type and

concentration of such impurities.

Resistivity versus temperature for a metal such as

copper. The curve is linear over a wide range of

temperatures, and ρ increases with increasing

temperature.



Superconductors

Resistance versus temperature

for a sample of mercury (Hg).

The graph follows that of a

normal metal above the critical

temperature Tc.

There is a class of metals and compounds whose resistance decreases to

zero when they are below a certain temperature Tc, known as the critical

temperature. These materials are known as superconductors. The

resistance–temperature graph for a superconductor follows that of a

normal metal at temperatures above Tc (see the Figure). When the

temperature is at or below Tc, the resistivity drops suddenly to zero. This

phenomenon was discovered in 1911 by Dutch physicist Heike

Kamerlingh-Onnes (1853–1926) as he worked with mercury, which is a

superconductor below 4.2 K. Measurements have shown that the

resistivities of superconductors below their Tc values are less than 4 ×

10–25 Ω · m, or approximately 1017 times smaller than the resistivity of

copper. In practice, these resistivities are considered to be zero.

Today, thousands of superconductors are known, and as the next Table

illustrates, the critical temperatures of recently discovered

superconductors are substantially higher than initially thought possible.

Two kinds of superconductors are recognized. The more recently

identified ones are essentially ceramics with high critical temperatures,

whereas superconducting materials such as those observed by

Kamerlingh-Onnes are metals.



If a room-temperature superconductor is ever identified, its effect on technology could be tremendous.

The value of Tc is sensitive to chemical composition, pressure, and molecular structure. Copper, silver, and

gold, which are excellent conductors, do not exhibit superconductivity.

One truly remarkable feature of superconductors is that once a current is set up in them, it persists without

any applied potential difference (because R = 0). Steady currents have been observed to persist in

superconducting loops for several years with no apparent decay!

Critical Temperatures for Various

Superconductors

A small permanent magnet 

levitated above a disk of 

the superconductor 

YBa2Cu3O7, which is in 

liquid nitrogen at 77 K.



An important and useful application of superconductivity is in the development of superconducting

magnets, in which the magnitudes of the magnetic field are approximately ten times greater than those

produced by the best normal electromagnets. Such superconducting magnets are being considered as a

means of storing energy. Superconducting magnets are currently used in medical magnetic resonance

imaging, or MRI, units, which produce high-quality images of internal organs without the need for

excessive exposure of patients to X-rays or other harmful radiation.

Resistance versus temperature for a sample of mercury (Hg). The graph follows that of a normal metal

above the critical temperature Tc.
Electrical power

In typical electric circuits, energy TET is transferred by electrical transmission from a source such as a

battery to some device such as a lightbulb or a radio receiver. Let’s determine an expression that will allow

us to calculate the rate of this energy transfer. First, consider the simple circuit in the Figure, where energy is

delivered to a resistor. (Resistors are designated by the circuit zigzag symbol.) Because the connecting wires

also have resistance, some energy is delivered to the wires and some to the resistor. Unless noted otherwise,

we shall assume the resistance of the wires is small compared with the resistance of the circuit element so

that the energy delivered to the wires is negligible.

Imagine following a positive quantity of charge Q moving clockwise around the circuit in the Figure from

point a through the battery and resistor back to point a. We identify the entire circuit as our system. As the

charge moves from a to b through the battery, the electric potential energy of the system increases by an

amount QΔV while the chemical potential energy in the battery decreases by the same amount.



(Recall that ΔU = qΔV.) As the charge moves from c to d through the resistor,

however, the electric potential energy of the system decreases due to collisions

of electrons with atoms in the resistor. In this process, the electric potential

energy is transformed to internal energy corresponding to increased vibrational

motion of the atoms in the resistor. Because the resistance of the

interconnecting wires is neglected, no energy transformation occurs for paths

bc and da. When the charge returns to point a, the net result is that some of the

chemical potential energy in the battery has been delivered to the resistor and

resides in the resistor as internal energy Eint associated with molecular

vibration.

The resistor is normally in contact with air, so its increased temperature results

in a transfer of energy by heat Q into the air. In addition, the resistor emits

thermal radiation TER, representing another means of escape for the energy.

After some time interval has passed, the resistor reaches a constant temperature.

At this time, the input of energy from the battery is balanced by the output of

energy from the resistor by heat and radiation, and the resistor is a nonisolated

system in steady state. Some electrical devices include heat sinks connected to

parts of the circuit to prevent these parts from reaching dangerously high

temperatures. Heat sinks are pieces of metal with many fins.

A circuit consisting of a

resistor of resistance R and a

battery having a potential

difference ΔV across its

terminals.



Because the metal’s high thermal conductivity provides a rapid transfer of energy by heat away from the hot

component and the large number of fins provides a large surface area in contact with the air, energy can

transfer by radiation and into the air by heat at a high rate.

Let’s now investigate the rate at which the electric potential energy of the system decreases as the charge Q

passes through the resistor:

where I is the current in the circuit. The system regains this potential energy when the charge passes through

the battery, at the expense of chemical energy in the battery. The rate at which the potential energy of the

system decreases as the charge passes through the resistor is equal to the rate at which the system gains

internal energy in the resistor. Therefore, the power P, representing the rate at which energy is delivered to

the resistor, is

We derived this result by considering a battery delivering energy to a resistor. This Equation, however, can be

used to calculate the power delivered by a voltage source to any device carrying a current I and having a

potential difference ΔV between its terminals.

Using the Equation and ΔV = IR for a resistor, we can express the power delivered to the resistor in the

alternative forms



When I is expressed in amperes, ΔV in volts, and R in ohms, the SI unit of power is the watt, as it was earlier

in our discussion of mechanical power. The process by which energy is transformed to internal energy in a

conductor of resistance R is often called joule heating; this transformation is also often referred to as an I2R

loss.

When transporting energy by electricity through power lines, you should not assume the lines have zero

resistance. Real power lines do indeed have resistance, and power is delivered to the resistance of these

wires. Utility companies seek to minimize the energy transformed to internal energy in the lines and

maximize the energy delivered to the consumer. Because P = IΔV, the same amount of energy can be

transported either at high currents and low potential differences or at low currents and high potential

differences. Utility companies choose to transport energy at low currents and high potential differences

primarily for economic reasons. Copper wire is very expensive, so it is cheaper to use high-resistance wire

(that is, wire having a small cross-sectional area; see the corresponding Equation above). Therefore, in the

expression for the power delivered to a resistor, P = I2R, the resistance of the wire is fixed at a relatively high

value for economic considerations. The I2R loss can be reduced by keeping the current I as low as possible,

which means transferring the energy at a high voltage. In some instances, power is transported at potential

differences as great as 765 kV. At the destination of the energy, the potential difference is usually reduced to

4 kV by a device called a transformer. Another transformer drops the potential difference to 240 V for use in

your home. Of course, each time the potential difference decreases, the current increases by the same factor

and the power remains the same.


