О ПРОГРАММНОЙ РЕАЛИЗАЦИИ МЕТОДОВ ПОИСКА ЭКСТРЕМУМОВ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ.

Выполнил студент группы 9312 Родченко Дмитрий Дмитриевич

Научный руководитель к.ф.-м.н., доцент Тихомиров Алексей Сергеевич

Постановка задачи

Написать компьютерную программу, реализующую методы поиска экстремумов функции многих переменных. Пусть целевая функция $f: \mathbb{R}^d \mapsto \mathbb{R}$ принимает минимальное значение в единственной точке x_* . Рассмотрим проблему поиска точки глобального минимума x_* с заданной точностью $x_* = 0$. Путь решения проблемы — применить методы алгоритмов случайного поиска экстремума функции.

В качестве пространства оптимизации будем рассматривать пространства $X = \mathbb{R}^d$ и $X = [a,b]^d$ с d-мерной мерой Лебега μ и метрикой ,

 $\rho_{\infty}(\mathbf{x},\mathbf{y}) = \max_{1 \le n \le d} |\mathbf{x}_{n} - \mathbf{y}_{n}|$

Где $x=(x_1,...,x_d)$ и $y=(y_1,...,y_d)$. Замкнутый шар радиуса r с центром в точке x обозначим как $B_r(x)=\{y\in X\colon \rho_\infty(x,y)\leq r\}$. Метрика ρ_∞ выбрана по соображениям простоты моделирования рассматриваемого случайного поиска.

Для поиска точки минимума x_* используются следующие методы:

- 1. алгоритм Марковского однородного монотонного случайного поиска;
- 2. алгоритм Марковского однородного случайного поиска с нормальным распределением;
- 3. алгоритм Марковского однородного случайного поиска с распределением Ингбера;
- 4. алгоритм Марковского неоднородного случайного поиска;
- 5. алгоритм Марковского неоднородного случайного поиска с нормальным распределением.

Рассмотрим алгоритм Марковского однородного монотонного случайного поиска

Обозначение « $\zeta \leftarrow P(\cdot)$ » читается так: «получить реализацию случайного вектора ζ с распределением P». x — начальная точка поиска, а $P(x, \cdot)$ — марковские переходные (пробные) функции. Рассмотрим случайный поиск алгоритма 1, функции $P(x, \cdot)$ которого обладают симметричными плотностями вида p(x,y) = $g(\rho_{\infty}(x,y))$, где ρ_{∞} — метрика, а g — невозрастающая неотрицательная функция, определенная на полуоси $(0,+\infty)$. Функция g — форма поиска. Пусть при $0 < \nu < \theta \le \Theta$ (ν , θ , Θ параметры поиска) форма поиска д задается следующей формулой:

где $\lambda = d \ln(\theta/\nu) + \Theta^{\rm d}/\theta^{\rm d}$ — нормирующая константа (обеспечивающая необходимое для плотности условие нормировки).

Через $U_r(x, \cdot)$ обозначим равномерное распределение в шаре $B_r(x)$, т.е. положим $U_r(x, \cdot) = \mu(\cdot \cap B_r(x))/\mu(B_r(x))$. Пусть α — равномерно распределенная на отрезке [0,1] случайная величина. Получим алгоритм 2 моделирования случайного вектора ζ , имеющего распределение $P(x, \cdot)$ с формой (1).

1. Алгоритм моделирования случайной величины ξ

- 1. $\xi_0 \leftarrow x, k \leftarrow 1$.
- 2. $\zeta_k \leftarrow P(\xi_{k-1}, \cdot)$.
- 3. Если $f(\zeta_k) \le f(\xi_{k-1})$, то $\xi_k \leftarrow \zeta_k$, иначе $\xi_k \leftarrow \xi_{k-1}$.
- 4. $k \leftarrow k + 1$ и перейти к шагу 2.
- 2. Алгоритм моделирования случайного вектора 🛴
 - Получить α.
 - 2. Если $\alpha \ge d \ln(\theta/\nu)/\lambda$, то $r \leftarrow \Theta$, иначе $r \leftarrow \nu \exp(\lambda \alpha/d)$.
- 3. $\zeta \leftarrow U_r(x, \cdot)$, завершить работу алгоритма.

Пример

$$\Theta = 0.7$$
;

Пространство $X = [-8,8]^2$, $x = (x_1, x_2)$, N = 500, v = 0.02.

$$f(x) = f(x_1, x_2) = \frac{1}{2}((x_1^4 - 16x_1^2 + 5x_1) + (x_2^4 - x_2^2 + 5x_2)),$$

$$f(x_*) = -78.332.$$

$$x_* = (-2.903, -2.904).$$

Начальная точка поиска выбрана x = (4,0, 6,4) и f(x) = 537,18.

Для разработки данной программы используется среда программирования IntelliJ IDEA 2016 и язык программирования Java

Главные причины:

- Удобная реализация математических расчетов;
- Доступность;
- Популярность.

Список литературы

- Tikhomirov A S 2018 On the program implementation of a Markov homogeneous monotonous random search algorithm of an extremum *IOP Conference Series: Materials Science and Engineering* Vol **441** 012055 1–8.
- Tikhomirov A S 2019 On the program implementation of a Markov homogeneous random search algorithm of an extremum with normal distributions *Journal of Physics: Conference Series* Vol **1352** 012052 1–7.
- Tikhomirov A S 2019 On the program implementation of a Markov inhomogeneous random search algorithm of an extremum with normal distributions *Journal of Physics: Conference Series* Vol **1352** 012053 1–8.
- Tikhomirov A S On the program implementation of one inhomogeneous Markov algorithm of search for extremum *Journal of Physics: Conference Series* Vol **1352** 012054 1–9.
- Tikhomirov A S 2019 On the program implementation of a Markov homogeneous random search algorithm of an extremum with Ingber's distribution *Journal of Physics: Conference Series* Vol **1352** 012055 1–7.

О ПРОГРАММНОЙ РЕАЛИЗАЦИИ МЕТОДОВ ПОИСКА ЭКСТРЕМУМОВ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ.

Выполнил студент группы 9312 Родченко Дмитрий Дмитриевич

Научный руководитель к.ф.-м.н., доцент Тихомиров Алексей Сергеевич