Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра алгебры и геометрии

ЛИНЕЙНАЯ АЛГЕБРА

Учебный модуль по направлению подготовки 44.03.05 –Педагогическое образование (с двумя профилями подготовки) Профиль - Математика и информатика

Рабочая программа

СОГЛАСОВАНО	Разработал Доцент каф. АГ
Начальник Учебного отдела О.Б. Широколобова и.О.Фамилия	<u>13 06</u> Н.В. Неустроев 2017 г.
30 10 2017 г. число месяц	Принято на заседании кафедры АГ Протокол № <u>10</u> от <u>14.06</u> 2017 г Заведующий кафедрой Т.Г. Сукачева <u>14</u> <u>06</u> 2017 г.

1 Цели и задачи учебного модуля

Цели учебного модуля (УМ) — развитие общей математической культуры студентов, создание базы для успешного освоения дисциплин естественнонаучного и профессионального циклов, готовности к решению системы профессиональных задач, связанных с применением методов данного УМ.

Задачи УМ — формирование систематизированных знаний в области математического анализа, алгебры и геометрии, представлений о месте и роли этих дисциплин в системе дисциплин естественнонаучного и профессионального циклов, возможностей использования его как фундамента;

- привитие и развитие математического мышления, воспитание высокой математической культуры; формирование личности студента, развитие его интеллекта, способностей к логическому и алгоритмическому мышлению; освоение студентами математических методов и основ математического моделирования;
- на примерах математических понятий и методов продемонстрировать студентам сущность научного подхода, специфику математики и ее роль в прикладных исследованиях

2 Место учебного модуля в структуре ОП направления подготовки

Модуль входит в вариативную часть блока Б1. Формируемые компетенции определяются Федеральным государственным образовательным стандартом высшего профессионального образования по подготовке ФГОС 44.03.05 Педагогическое образование (одновременно два профиля «Математика и Информатика»).

Освоение модуля предполагает знание школьного курса математики и является необходимым для последующего освоения модулей «Алгебра многочленов», «Евклидова и проективная геометрия» и т.д., а также модулей профессионального цикла, для успешного прохождения практики, для выполнения научно-исследовательской работы и написания выпускной квалификационной работы.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование компетенции:

СК-1 Способность демонстрировать знания, умения и навыки в области математики и информатики и применять их в научно-исследовательской и педагогической деятельности

В результате освоения УМ стулент должен знать, уметь и владеть:

Б результа	ic ochociina 3 ivi ci y	дент должен знать,	умств и владств.	
Код компетенции	Уровень освоения компетенции	Знать	Уметь	Владеть
СК-1	базовый	основные	применять	основными
		определения ,	теоретические	методами и
		формулы и	знания к	приемами
		алгоритмы	решению	решения
		линейной	основных типов	типовых задач;
		алгебры;	задач линейной	приемами и
		все понятия и	алгебры;	методами
		факты линейной	использовать	решения
		алгебры в их	средства	разноуровневых
		логической	линейной	задач по всем
		взаимосвязи;	алгебры в	темам линейной

различные виды	смежных	алгебры;
определений,	математических	приложениями
теорем,	дисциплинах -	линейной
содержание	геометрии и	алгебры в
основных	математическом	смежных
понятий и их	анализе;	математических
взаимосвязь;		курсах, а также
		для решения
		задач школьного
		курса алгебры.

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

В структуре УМ выделены 2 учебных элемента модуля (УЭМ) в качестве самостоятельных разделов:

УЭМ1: Линейные и евклидовы пространства.

УЭМ2: Линейные операторы.

Полная трудоемкость учебного модуля составляет 6 зачетных единиц (3E) – 2 семестр, со следующим распределением учебной работы (табл. 2).

Таблица 2 – Распределение учебной работы и трудоемкость дисциплины для очной формы обучения

Учебная работа (У	Всего	Распределен ие по семестрам 2	Коды форм-х комп-й	
Трудоемкость моду.	ля в зачетных единицах (ЗЕТ)	6	6	
	удоемкости по видам УР в			
УЭМ1 Линейные и евклидовы пространства	- лекции - практические занятия - лабораторные работы - в т.ч. аудиторная СРС -внеаудиторная СРС	18 27 0 9 45	18 27 0 9 45	CK-1 CK-1
УЭМ2 Линейные операторы	- лекции - практические занятия - лабораторные работы - в т.ч. аудиторная СРС -внеаудиторная СРС	18 27 0 9 45	18 27 0 9 45	СК-1 СК-1
Аттестация: - экзамен		36	36	

4.2 Содержание и структура разделов учебного модуля

УЭМ1.Линейные и евклидовы пространства

- 1.1. Линейные пространства, примеры, свойства. Базис и размерность линейного пространства.
- 1.2. Матрица перехода. Связь между координатами. Подпространства. Пересечение и сумма подпространств.
- 1.3. Евклидово пространство. Ортогональный и ортонормированный базисы.
- 1.4. Ортогональное дополнение подпространства евклидова пространства.

УЭМ2.Линейные операторы

- 2.1. Линейные операторы. Матрица линейного оператора.
- 2.2. Связь между матрицами линейного оператора в различных базисах.
- 2.3. Алгебра линейных операторов. Вырожденные и невырожденные операторы.
- 2.4. Линейные операторы с простым спектром и с простой структурой. Жорданова форма матрицы.

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте учебного модуля (приложение Б).

4.3 Тематика практических занятий

№ раздела УМ	Наименование	Трудоемкость, ак.час
1.1	Линейные пространства, примеры, свойства. Базис и размерность линейного пространства.	9
1.2	Матрица перехода. Связь между координатами. Подпространства. Пересечение и сумма подпространств	6
1.3	Евклидово пространство. Ортогональный и ортонормированный базисы.	6
1.4	Ортогональное дополнение подпространства евклидова пространства	6
2.1	Линейные операторы. Матрица линейного оператора	4
2.2	Связь между матрицами линейного оператора в различных базисах	7
2.3	Алгебра линейных операторов. Вырожденные и невырожденные операторы	7
2.4	Линейные операторы с простым спектром и с простой структурой. Жорданова форма матрицы	9

4.4 Организация изучения учебного модуля

Образовательный процесс по дисциплине строится на основе комбинаций методологических технологий (модульно-рейтинговое обучение, контекстное обучение, технология поэтапного формирования умственных действий, технология развивающего

обучения, технология развития критического мышления), осуществляемых с использованием следующих тактических действий:

- лекционные (вводная лекция, информационная лекция, обзорная лекция, пекция, консультация, проблемная лекция);
- практические (решение задач, углубление знаний, полученных на теоретических занятиях);
- тренинговые (формирование определенных умений и навыков, формирования алгоритмического мышления);
- активизации познавательной деятельности (работа с литературой, подготовка сообщений, докладов, рефератов, обсуждение различных решений и различных доказательств тех или иных задач и теорем);
- самоуправление (самостоятельная работа студентов, самостоятельное изучение материала).

Необходимо обязательное использование информационных технологий при организации коммуникации со студентами для представления информации, выдачи рекомендаций, контроля знаний и консультирования по оперативным вопросам (электронная почта), использование мультимедиа средств при проведении лекционных и практических занятий.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течении всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения модуля используются формы контроля: текущий – регулярно в течении всего семестра; рубежный – на девятой неделе семестра; семестровый – по окончании изучения УМ.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с положением от 25.06.13, протокол №9 « О фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации студентов и итоговой аттестации выпускников».

Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение Б).

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено Картой учебно-методического обеспечения (Приложение В).

7 Материально-техническое обеспечение учебного модуля

Реализация учебного модуля требует наличия учебной аудитории, оборудованной:

- посадочными местами по количеству обучающихся;
- рабочим местом преподавателя;
- методическими материалами (включая электронные): комплект учебнометодических пособий по разделам модуля.

Технические средства обучения MS Word, MS Excel, MS PowerPoint.

Приложения (обязательные):

- А Методические рекомендации по организации изучения учебного модуля
- Б Технологическая карта
- В Карта учебно-методического обеспечения УМ

Приложение А

А1. Методические рекомендации по организации изучения раздела учебного модуля УЭМ1 « Линейные и евклидовы пространства»

Методические рекомендации по организации УЭМ 1 предусматривают следующие виды учебных занятий: теоретические (лекционные), практические занятия.

Содержание основных разделов, а также методы и средства проведения занятий представлены ниже ($\Pi - 1$ академический час, $\Pi 3 - 1$ академический час). Теоретические разделы соответствуют учебникам [7; 8], практические занятия и домашние задания соответствуют учебникам [9; 10]. После каждого практического занятия на дом задаются те примеры, аналоги которых разработаны в аудитории, а также примеры, требующие самостоятельного поиска путей решений в соответствии с рассмотренной теорией.

Темы самостоятельных работ представлены в конце каждого раздела. Отчет о проделанной самостоятельной работе и домашние работы представляются в виде конспекта.

Специфика дисциплины состоит в том, что в ней соединены как чисто алгебраические структуры и методы (системы линейных уравнений, теория матриц и определителей, линейная алгебра), так и геометрические разделы (векторная алгебра, аналитическая геометрия). Другой особенностью служит малое количество аудиторных часов, выделяемых на предмет. Наконец, при преподавании дисциплины приходится учитывать возраст и будущую специализацию студентов I курса, которые впоследствии будут заниматься скорее не фундаментальными, а прикладными исследованиями.

Изучаемый в курсе материал является базовым и крайне востребован в других математических и прикладных дисциплинах. Поэтому основной задачей преподавателя является ознакомление студентов – на уровне строгих обоснований – с алгебраическими и геометрическими методами, применяемыми как в смежных разделах математики (математический анализ, дифференциальные уравнения, дискретная математика, теория вероятностей и др.), так и в нематематических науках, с целью формирования у студентов единого «алгебро-геометрического» подхода к решению задач. Практика показывает, что, если материал начитывается отдельными, мало связанными друг с другом, блоками, достичь этой цели не удается. В связи с вышеизложенным общее построение курса базируется на следующем: 1) обоснование необходимости введения каждого нового объекта для решения той или иной задачи; 2) связь каждой следующей темы с предыдущей; 3) регулярная демонстрация тесной взаимосвязи. существующей между алгебраическими геометрическими объектами.

Курс начинается с изучения комплексных чисел. Комплексные числа вводятся алгебраически из необходимости находить корни любых квадратных уравнений, а затем, после изучения их алгебраических свойств, трансформируются в объекты геометрические — точки на плоскости или их радиус-векторы. Это, с одной стороны, приводит к формулам Муавра-Лапласа и способам решения уравнений 3-й и 4-й степеней, а с другой — к арифметическому пространству R^2 . Как развитие темы далее вводится арифметическое n-мерное пространство R^2 с ключевыми понятиями: независимость, базис, ранг систем векторов. Операции с векторами естественно приводят к системам линейных уравнений, их исследованию методом Гаусса. Затем подробно разбирается алгебра матриц и теория определителей; основным посылом к этим разделам служит поиск альтернативных методу Гаусса методов решения систем линейных уравнений.

Вся наработанная теория систем линейных уравнений, матриц и определителей применяется к изучению трехмерной векторной алгебры и, сначала линейных, а затем квадратичных геометрических образов на плоскости и в пространстве. Естественное обобщение приводит к кривым высших порядков и их уравнениям, то есть к алгебре многочленов. Наконец, единый взгляд на возникавшие в курсе дисциплины – комплексные

числа, трехмерные и n-мерные векторы, матрицы и многочлены — обосновывают ведение понятия линейного пространства и изучение его общих свойств: базиса, размерности координат, матриц перехода, скалярного произведения, линейных операторов, то есть всего того, что составляет предмет линейной алгебры.

Взаимосвязь между алгеброй и геометрией важно иллюстрировать в каждой изучаемой теме курса. Так, например, матрицы попеременно выступают то в роли алгебраических объектов — как совокупности коэффициентов систем линейных уравнений, то в роли геометрических — как матрицы преобразований пространства. Особое внимание стоит обращать на возможность применения геометрических методов в решении алгебраических задач, и наоборот.

Следовательно, с помощью постоянного прослеживания связей между алгебраической и геометрической составляющими математики можно эффективно решит задачу по формированию базовых теоретических знаний и практических навыков по изучаемой дисциплине.

Тема 1.1 Линейные пространства, примеры, свойства. Базис и размерность линейного пространства

 $(\Pi 1-6)$

Линейные пространства, примеры, свойства. Базис и размерность линейного пространства.

(ПЗ 1-9)

Действия над комплексными числами. Линейная зависимость и независимость конечной системы векторов, свойства. Базис и размерность линейного пространства.

Темы домашнего задания СРС:

- 1. Операции над комплексными числами в алгебраической и тригонометрической форме.
- 2. Линейно зависимые и линейно независимые системы векторов.
- 3. Базис и размерность линейного пространства

Тема 1.2 Матрица перехода. Связь между координатами. Подпространства. Пересечение и сумма подпространств

(Л **7--10**)

Координаты вектора. Связь между базисами. Преобразование координат. Пересечение и сумма и прямая сумма подпространств.

(ПЗ 10-15)

Координаты вектора. Матрица перехода от одного базиса к другому. Преобразование координат. Пересечение, сумма и прямая сумма подпространств.

Темы домашнего задания СРС:

- 1. Вычисление матрицы перехода и координат вектора в различных базисах.
- 2. Размерности и базисы подпространств, их пересечения и суммы.

Тема 1.3 Евклидово пространство. Ортогональный и ортонормированный базисы.

(Л **11-14**)

Евклидово пространство. Ортогональный и ортонормированный базисы.

$(\Pi 3 16-21)$

Длина вектора, угол между векторами. Процесс ортогонализации. КР1.

Темы домашнего задания СРС:

- 1. Вычисление длины вектора и угла между векторами.
- 2. Нахождение ортогонального и ортонормированного базиса.

Тема 1.4 Ортогональное дополнение подпространства евклидова пространства

Ортогональное дополнение подпространства евклидова пространства (ПЗ 22-27)

Ортогональная проекция и ортогональная составляющая вектора на подпространство. Базис и размерность ортогонального дополнения подпространства KP1.

Темы домашнего задания СРС:

- 1. Нахождение ортогональной проекции и ортогональной составляющей вектора на подпространство.
- 2. Нахождение ортогонального и ортонормированного базиса и размерности ортогонального дополнения подпространства

Демонстрационный вариант КР1

Тема: «Линейные и евклидовы пространства. »

№ 1. Даны две системы векторов в пространстве R^3 . Доказать, что каждая из них образует базис пространства и найти матрицу перехода от базиса

$$\vec{(e)} = \begin{cases} \vec{e}_1 = (3,2,-1) \\ \vec{e}_2 = (0,1,5) \\ \vec{e}_3 = (-1,2,14) \end{cases} \qquad \vec{(v)} = \begin{cases} \vec{v}_1 = (4,-1,-2) \\ \vec{v}_2 = (3,2,-6) \\ \vec{v}_3 = (1,0,-1) \end{cases}$$

№ 2. Найти ортонормированный базис линейной оболочки векторов:

$$L(\vec{a}) = \begin{cases} \vec{a}_1 = (1,1,-1,-2) \\ \vec{a}_2 = (5,8,-2,-3) \\ \vec{a}_3 = (3,9,3,8) \end{cases}$$

№ 3. Найти базис и размерность суммы и пересечения пространств

$$L_{1}(\vec{a}) = \begin{cases} \vec{a}_{1} = (-1,2,3,4) \\ \vec{a}_{2} = (1,1,2,-1) \\ \vec{a}_{3} = (0,-1,5,-3) \end{cases} \quad \text{if } L_{2}(\vec{b}) = \begin{cases} \vec{b}_{1} = (2,6,24,-1) \\ \vec{b}_{2} = (1,3,12,0) \end{cases}$$

№ 4 Ортогонализировать систему векторов и нормировать ее.

$$\overline{a}_1 = (1,2,-1,2); \quad \overline{a}_2 = (1,1,3,-5); \quad \overline{a}_3 = (-7,6,-15,0).$$

№ 5 Разложить вектор $\bar{x}=(1,2,3,1)$ на сумму составляющих \bar{y} и \bar{z} , где $\bar{y}\in Z(\bar{a}_1,\bar{a}_2)$, $z\in Z^\perp$

$$\overline{a}_1 = (1,0,2,1); \quad \overline{a}_2 = (0,3,1,0).$$

Контрольные вопросы к УЭМ1 (КЛ1)

- 1 Определение линейного пространства, свойства, примеры.
- 2 Линейная зависимость и линейная независимость конечной системы векторов, свойства.
- 3 Размерность и базис линейного пространства.
- 4 Связь между базисами.
- 5 Преобразование координат вектора.
- 6 Подпространства. Пересечение и сумма подпространств.
- 7 Размерность суммы двух конечномерных подпространств.
- 8 Прямая сумма подпространств. Теорема. Следствие.
- 9 Евклидово пространство. Длина вектора, угол между векторами. Теоремы.
- 10 Ортогональный и ортонормированный базис евклидова пространства.

А2. Методические рекомендации по организации изучения раздела учебного модуля УЭМ2 « Линейные операторы»

Методические рекомендации по организации УЭМ 1, УЭМ 2 предусматривают следующие виды учебных занятий: теоретические (лекционные), практические занятия.

Содержание основных разделов, а также методы и средства проведения занятий представлены ниже (J-1) академический час, III-1 академический час). Теоретические разделы соответствуют учебникам III-1, практические занятия и домашние задания соответствуют учебникам III-1, после каждого практического занятия на дом задаются те примеры, аналоги которых разработаны в аудитории, а также примеры, требующие самостоятельного поиска путей решений в соответствии с рассмотренной теорией.

Темы самостоятельных работ представлены в конце каждого раздела. Отчет о проделанной самостоятельной работе и домашние работы представляются в виде конспекта.

Тема 2.1 Линейные операторы. Матрица линейного оператора

(JI 1-4)

Линейные операторы. Матрица линейного оператора.

(ПЗ 1-4)

Линейные отображения. Свойства линейного оператора. Вычисление матрицы линейного оператора.

Темы домашнего задания СРС:

- 1 Примеры линейных операторов.
- 2 Нахождение матрицы линейного оператора.

Тема 2.2 Связь между матрицами линейного оператора в различных базисах. (Л 5--8)

Связь между матрицами линейного оператора в различных базисах.

 $(\Pi 3 5-11)$

Нахождение матриц линейного оператора в различных базисах.

Темы домашнего задания СРС:

1 Вычисление матриц линейного оператора в различных базисах.

Тема 2.3 Алгебра матриц. Вырожденные и невырожденные операторы.

(JI 9-12)

Действия над линейными операторами. Вырожденные и невырожденные линейные операторы.

Нахождение матриц суммы, произведения линейных операторов и матрицы обратного оператора. Вырожденные и невырожденные операторы

Темы домашнего задания СРС:

- 1 Операции над линейными операторами.
- 2 Нахождение матриц суммы, произведения линейных операторов и матрицы обратного оператора.
- 3 Вырожденные и невырожденные операторы.

Тема 2.4 Линейные операторы с простым спектром и с простой структурой. Жорданова форма матрицы.

(JI 13-18)

Линейные операторы с простым спектром и с простой структурой. Жорданова форма матрицы.

Линейные операторы с простым спектром и с простой структурой. Жорданова форма матрицы.

KP2

Коллоквиум (КЛ2).

Темы домашнего задания СРС:

- 1. Приведение матрицы к диагональному виду.
- 2. Приведение матрицы к жордановой форме.

КР2. Демонстрационный вариант.
№ 1. Даны два базиса
$$\vec{e}_1 = \vec{e'}_1, \vec{e}_2 = 3\vec{e'}_1 + \vec{e'}_2, \vec{e}_3 = 2\vec{e'}_1 + \vec{e'}_2 + 2\vec{e'}_3$$
 и $\vec{e'}_1, \vec{e'}_2, \vec{e'}_3$ линейного

пространства и матрица
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix}$$
 линейного оператора в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Найти

матрицу этого линейного оператора в базисе \vec{e}_1 , \vec{e}_2 , \vec{e}_3 .

№ 2. Найти собственные значения и собственные векторы линейного оператора, заданного в некотором базисе матрицей:

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 5 & 6 & 9 \\ 6 & 5 & 9 \\ -6 & -6 & -10 \end{pmatrix}.$$

приводящую данную матрицу к жордановой форме.

Контрольные вопросы к УЭМ2 (КЛ2)

- 1. Определение и простейшие свойства линейных операторов.
- 2. Задание линейного оператора с помощью отображения базиса.
- 3. Матрица линейного оператора.

- 4. Связь между матрицами линейного оператора в различных базисах.
- 5. Подобные матрицы.
- 6. Операции над линейными операторами.
- 7. Изоморфизм линейных алгебр.
- 8. Образ линейного оператора.
- 9. Ядро линейного оператора.
- 10. Вырожденные и невырожденные операторы. Обратный оператор.
- 11. Собственные векторы и собственные значения линейного оператора.
- 12. Характеристическое уравнение линейного оператора.
- 13. Линейный оператор с простым спектром, с простой структурой. Приведение матрицы к диагональному виду.
- 14. Инвариантные подпространства.
- 15. Собственные подпространства, свойства.
- 16. Теорема Гамильтона-Кэли.
- 17. Корневые подпространства.
- 18. Строение корневого подпространства. Нильпотентный оператор. Жордановы цепочки. Циклические подпространства.
- 19. Теорема Жордана.

Контрольные вопросы к экзамену «Линейная алгебра» (YM31, YM32) 1 семестр

- 1. Определение линейного пространства, свойства, примеры.
- Линейная зависимость и линейная независимость конечной системы векторов, свойства. 2.
- 3. Размерность и базис линейного пространства.
- 4. Связь между базисами.
- 5. Преобразование координат вектора.
- 6. Подпространства. Пересечение и сумма подпространств.
- 7. Размерность суммы двух конечномерных подпространств.
- 8. Прямая сумма подпространств. Теорема. Следствие.
- 9. Евклидово пространство. Длина вектора, угол между векторами. Теоремы.
- 10. Ортогональный и ортонормированный базис евклидова пространства.
- 11. Определение линейного оператора. Задание линейного оператора с помощью отображения базиса.
- 12. Матрица линейного оператора.
- 13. Связь между матрицами линейного оператора в различных базисах.
- 14. Операции над линейными операторами.
- 15. Образ и ядро линейного оператора.
- 16. Вырожденные и невырожденные операторы. Обратный оператор.
- 17. Собственные векторы и собственные значения линейного оператора.
- 18. Характеристическое уравнение линейного оператора.
- 19. Линейный оператор с простым спектром, с простой структурой. Приведение матрицы к диагональному виду.
- 20 Инвариантные подпространства.
- 21 Собсвенные подпространства, свойства.
- 22 Теорема Гамильтона-Кэли.
- 23 Корневые подпространства.
- 24 Строение корневого подпространства. Нильпотентный оператор. Жордановы цепочки. Циклические подпространства.
- 25 Теорема Жордана.

Экзаменационный билет состоит из двух теоретических вопросов и две задачи ([2],[3], источники из Приложения Б)

Демонстрационный вариант экзаменационного билета

Новгородский государственный университет имени Ярослава Мудрого

Кафедра алгебры и геометрии

Экзаменационный билет № 1 ЛИНЕЙНАЯ АЛГЕБРА

Направление подготовки 44.03.05 –Педагогическое образование Профили «Математики и информатика»

- 1 Связь между базисами.
- 2 Характеристическое уравнение линейного оператора .
- 3 Найти собственные значения и собственные векторы линейного оператора, заданного в некотором базисе матрицей: $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 & 9 \\ 6 & 5 & 9 \\ -6 & -6 & -10 \end{pmatrix}.$
- 4 Найти ортонормированный базис линейной оболочки векторов

$$L(\vec{a}) = \begin{cases} \vec{a}_1 = (1,2,2,-1) \\ \vec{a}_2 = (1,1,-5,3) \\ \vec{a}_3 = (3,2,8,-7) \end{cases}$$

Принято на заседании кафедры	
Протокол №	
Заведующий кафедрой АГ	

Приложение Б

Технологическая карта учебного модуля «Линейная алгебра»

семестры 1 ЗЕТ <u>6</u>, вид аттестации <u>экзамен</u>, акад.часов <u>126</u> баллов рейтинга <u>300</u>

2 семестр

	No		Трудо	ewkoc	TL SK USC		Форма	Максим
	№ Трудоемкость, ак.час недел Аудиторные занятия				текущего	. КОЛ-ВО		
		11y,	цитори	bic sai	ПЛТИЛ		контроля	баллов
№ и наименование раздела учебного модуля, КЛ/КР	и сем.						успев. (в	рейтинг
ле и панменование раздела у теоного модули, телите		ЛЕК	ПЗ	ЛР	ACPC	CPC	соотв. с	a
		JILK	113	711	ACIC		паспортом	l a
							ФОС)	
УЭМ1: Линейные и евклидовы пространства.		18	27	_	9	45	Ψου)	
1.1. Линейные пространства, примеры, свойства. Базис и размерность	1-3	10	21		,	13	ДР1,	2
линейного пространства.	1-3	6	9		3	13	CP1	8
линеиного пространства.		0		_	3		CII	0
1.2 Матрица перехода. Связь между координатами. Подпространства.	4-5		_		_	11	ДР2,	2
Пересечение и сумма подпространств.		4	6	-	2		CP2	8
1.3Евклидово пространство. Ортогональный и ортонормированный	6-7					11	ДР3,	2
базисы.		4	6	-	2		CP3	8
							KP1	35
1.4 Ортогональное дополнение подпространства евклидова пространства.	8-9	4	-		2	10	ДР4,	2
		4	6	-	2		CP4	8
Рубежная аттестация (Контрольный опрос КЛ1)								50
Всего по УЭМ1:								125
УЭМ2: Линейные операторы.		18	27	-	9	45		
2.1. Линейные операторы. Матрица линейного оператора.	10	4	7	-	1	6	ДР5,	2
							CP5	8
2.2. Связь между матрицами линейного оператора в различных базисах.	11-12	4	7	-	2	11	ДР6,	2
							CP6	8
2.3. Алгебра линейных операторов. Вырожденные и невырожденные	13-15	6	9	-	3	15	ДР7,	2

операторы.							CP7	8
							KP2	35
2.4. Линейные операторы с простым спектром и с простой структурой.	16-18	6	7	-	3	13	ДР8,	2
Жорданова форма матрицы.							CP8	8
Рубежная аттестация (Контрольный опрос КЛ2)								50
Всего по УЭМ2:								125
ЭКЗАМЕН								50
Итого:								300

Критерии оценки качества освоения студентами дисциплины:

трудоемкость дисциплины 6 3E = 506 x 6 = 300 б.

оценка «удовл.» - 150 - 209. оценка «хор.» - 210 - 269. оценка «отл.» - 270 - 300.

Приложение В (обязательное)

Карта учебно-методического обеспечения

Модуля «Линейная алгебра»

Направление 44.03. 05 Педагогическое образование, одновременно два профиля «Математика и информатика»

Формы обучения очная

Курс 1 Семестр 2

Часов: всего 216 (6<u>3E)</u>, лекций 36, практ. зан. 54, СРС ауд. 18, СРС – 90, экзамен - 36 Выпускающая кафедра – Алгебры и геометрии

Таблица 1- Обеспечение учебного модуля учебными изданиями

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1 Кадомцев С.Б. Аналитическая геометрия и линейная алгебра. – М.: ФИЗМАТЛИТ, 2003. – 157 с.	147	
2 Окунев Л.Я. Высшая алгебра: учебник. – 3-е изд. – СПб.: Лань, 2014. – 336 с. [2009]	22	
3 Фаддеев Д.К. Задачи по высшей алгебре: учебное пособие для мат. спец. / Д.К. Фаддеев, И.С. Соминский. – 17 изд.– СПб.: Лань, 2017. – 287 с. [2001, 2005, 2008]	30	
Учебно-методические издания		
4 Алгебра и геометрия. Ч.1: Учеб. пособие / Сост.: Д.В. Коваленко, Н.В. Неустроев; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2006, 2008, 2013. – 77 с.	32	
5 Рабочая программа модуля «Алгебра многочленов» для направления 44. 03. 05 Педагогическое образование, одновременно два профиля «Математика и информатика» / сост. Н.В. Неустроев ; НовГУ им. Ярослава Мудрого Великий Новгород, 2017. — 17 с.		

Таблица 2 – Информационное обеспечение модуля

Назрание программного пролукта, интернет ресурса	Электронн	Примечани
Название программного продукта, интернет-ресурса	ый адрес	e

Таблица 3 – Дополнительная литература

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
1 Курош А.Г. Курс высшей алгебры: Учебник для студентов вузов. – СПб.: Лань, 2008. – 431 с. – [2007], [2006], [2005],	44	
[2003].		
2 Проскуряков И.В. Сборник задач по линейной алгебре:	32	
Учебное пособие. – 12-е изд. – СПб.: Лань, 2008. – 475 с. –		
[2007].		

Действи	ительно для учебног	о года/	
Зав. каф	редрой		
-	подпись	И.О.Фамилия	
	-	20 г.	
СОГЛАСОВАНО			
НБ НовГУ:			
	должность	подпись	расшифровка