Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра алгебры и геометрии

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ

Учебный модуль по направлению подготовки 44.03.05 – Педагогическое образование (с двумя профилями подготовки) Профиль – Математика и информатика

Рабочая программа

СОГЛАСОВАНО Начальник Учебного отдела

> ef О.Б. Широколобова » 10 2017 г.

Разработал Доцент кафедры АГ НовГУ

Д.В. Коваленко « 13 » ОВ 2017 г.

Принято на заседании кафедры Протокол № 10 от 14.06 2017 г. Заведующий кафедрой

Т.Г. Сукачева « 14 » 06 2017 г.

1 Цели освоения учебного модуля

Цель учебного модуля: формирование у студентов как будущих педагоговматематиков компетентности в геометрии как одной из важнейших областей современной математики.

Задачи, решение которых обеспечивает достижение цели:

- формирование у студентов достаточных представлений о предмете дифференциальной геометрии и ее аналитическом аппарате, а также ее связях со смежными математическими дисциплинами;
- освоение студентами основ классической теории кривых и поверхностей в евклидовом пространстве, а также элементами внутренней геометрии поверхности;
- стимулирование студентов к самостоятельной учебно-исследовательской деятельности по освоению учебного модуля и формированию необходимых компетенций.

2 Место учебного модуля в структуре ОП направления подготовки

Данный модуль входит в блок дисциплин по выбору учебного плана. Формируемые компетенции определяются Федеральным государственным образовательным стандартом высшего образования по направлению 44.03.05 — Педагогическое образование для профилей математика и информатика и образовательной программой, разработанной выпускающей кафедрой алгебры и геометрии. Изучается в 8-м семестре и базируется на таких дисциплинах, как «Геометрия», «Математический анализ», «Дифференциальные уравнения».

Знания, полученные при изучении учебного модуля, могут быть использованы для написания студентами выпускных квалификационных работ, а также для продолжения образования в магистратуре, аспирантуре, для самообразования.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ «Основы дифференциальной геометрии» направлен на формирование компетенций:

 СК-1 Способность демонстрировать знания, умения и навыки в области математики и информатики и применять их в научно-исследовательской и педагогической деятельности.

В результате освоения УМ студент должен знать, уметь и владеть:

Код ком- петенции	Уровень освоения компетенции	Знать	Уметь	Владеть
СК-1	повышен- ный	- основы теории кривых, связанные с понятиями кривизны и кручения; - основные факты внешней геометрии поверхностей; - элементы внутренней геометрии поверхностей.	- доказывать основные теоремы модуля; - применять изученные теоретические знания к решению типовых упражнений.	- основами анализа вектор-функций; - аналитическим аппаратом теории кривых и поверхностей и его применением к решению задач.

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

В структуре УМ выделены 2 учебных элемента модуля (УЭМ) в качестве самостоятельных разделов:

- УЭМ 1 основы теории кривых;
- УЭМ 2 основы теории поверхностей.

Полная трудоемкость учебного модуля составляет 6 зачетных единиц (3E) – 8 семестр - со следующим распределением учебной работы (Табл. 2).

Таблица 2 – Распределение учебной работы и трудоемкость учебного модуля для очной формы обучения.

Учебная работа (УР)	Всего	Распределение по семестрам	Коды формируемых компетенций
		8 сем.	
Трудоемкость модуля в зачетных единицах (ЗЕТ)	6	6	
Распределение трудоемкости по видам УР в академических часах (АЧ):			
1) УЭМ 1 основы теории			
кривых:	10	10	CIC 1
- лекции	18	18	CK-1
- практические занятия	27	27	СК-1
- в том числе, аудиторная СРС	9	9	
- внеаудиторная СРС	48	48	
2) УЭМ 2 основы теории поверхностей:			
- лекции	18	18	CK-1
- практические занятия	27	27	CK-1
- в том числе, аудиторная СРС	9	9	
- внеаудиторная СРС	42	42	
Аттестация:	36	36	
– экзамен			
Итого:	216	216	

4.2 Содержание и структура разделов учебного модуля

- 1. Основы теории кривых
 - 1.1. Понятие кривой. Регулярные кривые. Способы аналитического задания кривых.
 - 1.2. Касательная кривой. Соприкасающаяся плоскость кривой.
 - 1.3. Длина дуги кривой, естественная параметризация кривой.
 - 1.4. Кривизна кривой.
 - 1.5. Кручение кривой.
 - 1.6. Формулы Френе. Натуральные уравнения кривой.
- 2. Основы теории поверхностей
 - 2.1. Понятие поверхности. Регулярная поверхность. Аналитическое задание поверхности.
 - 2.2. Касательная плоскость поверхности.
 - 2.3. Первая квадратичная форма поверхности и ее первые применения: длина кривой, угол между кривыми, площадь области на поверхности. Понятие о внутренней геометрии поверхности.

- 2.4. Вторая квадратичная форма поверхности и ее геометрический смысл. Соприкасающийся параболоид поверхности. Типы точек поверхности. Главные кривизны и главные направления, формула Эйлера, средняя и гауссова кривизны.
- 2.5. Деривационные формулы. Теорема egregium Гаусса. Теорема О.Бонне. Геодезическая кривизна кривой на поверхности, геодезические линии и их свойства. Теорема Гаусса-Бонне. Поверхности постоянной гауссовой кривизны.

4.3 Организация изучения учебного модуля

Образовательный процесс по дисциплине строится на основе комбинаций методологических технологий (модульно-рейтинговое обучение, контекстное обучение, технология поэтапного формирования умственных действий, технология развивающего обучения, технология развития критического мышления), осуществляемых с использованием следующих тактических действий:

- лекционные (вводная лекция, информационная лекция, обзорная лекция, лекция, консультация, проблемная лекция);
- практические (решение задач, углубление знаний, полученных на теоретических занятиях);
- тренинговые (формирование определенных умений и навыков, формирования алгоритмического мышления);
- активизации познавательной деятельности (работа с литературой, подготовка сообщений, докладов, рефератов, обсуждение различных решений и различных доказательств тех или иных задач и теорем);
- самоуправление (самостоятельная работа студентов, самостоятельное изучение материала).

Целесообразно использовать информационные технологии при организации коммуникации со студентами для представления информации, выдачи рекомендаций, контроля знаний и консультирования по оперативным вопросам (электронная почта), использование мультимедиа средств при проведении лекционных и практических занятий.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения модуля используются формы контроля:

- текущий регулярно в течение всего семестра,
- рубежный на девятой неделе семестра,
- семестровый по окончанию изучения УМ.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с положением от 25.06.13, протокол \mathbb{N}_{2} 9 «О фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации студентов и итоговой аттестации выпускников».

Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение Б).

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено картой учебно-методического обеспечения (Приложение В).

7 Материально-техническое обеспечение учебного модуля

Для осуществления образовательного процесса по дисциплине рекомендуется использование мультимедийного оборудования для демонстрации изображений конкретных кривых и поверхностей и связанных с ними основных дифференциально-геометрических объектов: касательных к кривым, соприкасающихся плоскостей, элементов репера Френе и их динамику, касательных и нормальных плоскостей поверхностей, линий кривизны и геодезических и т.п. Подобного рода оборудование может быть использовано также для информационного сопровождения лекционных и практических занятий.

Приложения (обязательные):

- А Методические рекомендации по организации изучения учебного модуля
- Б Технологическая карта
- В Карта учебно-методического обеспечения УМ
- Г Экзаменационные вопросы
- Д Пример экзаменационного билета

Приложение А

Методические рекомендации по организации изучения раздела учебного модуля «Основы дифференциальной геометрии»

Вся учебная работа по освоению студентами модуля «Основы дифференциальной геометрии» подразделяется на следующие основные виды занятий: лекционные (Л), практические занятия (ПЗ), самостоятельную работу студентов (СРС).

Содержание основных разделов, а также методы и средства проведения занятий представлены ниже ($\Pi - 1$ академический час, $\Pi 3 - 1$ академический час). Теоретические разделы соответствуют учебникам [1; 2, 3], практические занятия и домашние задания соответствуют учебнику [2]. После каждого практического занятия на дом задаются те примеры, аналоги которых рассмотрены в аудитории, а также примеры, требующие самостоятельного поиска путей решения в соответствии с рассмотренной теорией.

Темы самостоятельных работ представлены в конце каждого раздела. Отчет о проделанной самостоятельной работе и домашние работы представляются в виде конспекта.

Освоение каждого вопроса, включенного в программу модуля, предусматривает овладение студентами всех затронутых в нем понятий, теорем и их доказательств, методов и приемов решения соответствующих примеров и задач. Основными источниками, которые могут быть использованы, являются, в первую очередь, лекции преподавателя, а также учебники [1,2,3], задачники [2]. Полезной будет и другая литература, которую студент может подобрать сам.

Занятия проводятся, как правило, в диалоговой форме: в ходе лекций преподавателем систематически задаются вопросы студентам, на практических занятиях проводится опрос материала, преподавателем даются образцы решения типовых задач и т.п. После изучения каждой темы на лекционных и практических занятиях проводится небольшая практическая аудиторная самостоятельная работа, результаты которой учитываются в ходе рубежной аттестации. По завершению изучения каждого учебного элемента модуля (УЭМ) проводится итоговая контрольная работа (КР). В малочисленных студенческих группах (до 10 человек) имеет смысл использовать лишь 1 вариант каждой из самостоятельных и контрольных работ (при надлежащем контроле), это ставит всех студентов в равные условия.

Ниже дается краткое изложение содержания тем домашних заданий, аудиторных практических работ, а также демонстрационных вариантов контрольных работ.

Задания для аудиторной самостоятельной работы студентов:

- CPC-1 различные способы аналитического задания кривой, условия гладкости; касательные к кривым; соприкасающиеся плоскости;
- ${\rm CPC\text{-}2}$ длина дуги кривой; кривизна и кручение кривых; натуральные уравнения кривой;
- CPC-3 различные способы аналитического задания поверхностей, условия гладкости; касательные плоскости поверхностей, кривые на поверхностях;
- КР-1 решение системы задач по материалам учебного элемента модуля 1 (пример работа №1 в приложении А);
 - СРС-4 первая квадратичная форма поверхности и ее применения;
- СРС-5 вторая квадратичная форма поверхности; исследование поверхностей с помощью первой и второй квадратичных форм: типы точек поверхности; нормальные и главные кривизны; средняя и гауссова кривизны поверхности;
- СРС-6 геодезическая кривизна кривой, геодезические линии на поверхности; поверхности постоянной гауссовой кривизны;
- КР-2 решение системы задач по материалам учебного элемента модуля 2 (пример работа №2 в приложении А).

Задания для внеаудиторной самостоятельной работы студентов:

- изучить теоретический материал учебного элемента модуля 1, используя:
 - а) лекции;
 - б) учебник [1] основного списка;
- подготовиться к выполнению аудиторных самостоятельных работ 1 -3, изучив приёмы и методы решения типовых задач, рассмотренных на практических занятиях, а также задач из учебного пособия [2], предлагавшихся для домашних заданий;
- -- подготовиться к написанию теоретической работы по материалам модуля 1 (вопросы 1 -- 9 из приложения Γ);
- подготовиться к написанию контрольной работы №1 (пример работа №1 из приложения A);
 - изучить теоретический материал учебного элемента модуля 2, используя:
 - а) лекции;
 - б) учебник [1] основного списка;
- подготовиться к выполнению аудиторных самостоятельных работ 4-6, изучив приёмы и методы решения типовых задач, рассмотренных на практических занятиях, а также задач из учебного пособия [2], предлагавшихся для домашних заданий;
- подготовиться к написанию контрольной работы по материалам модуля 2 (пример работа № 2 из приложения А);
- подготовка к написанию теоретической работы по материалам модуля 2 (вопросы 10-26 из приложения Γ).

Контрольная работа № 1

- 1 Винтовая линия γ задана системой уравнений $x = a \cos t$, $y = a \sin t$, z = bt, где $a > 0, b \in R, -\infty < t < +\infty$. Найдите:
 - величину угла, образованного касательной к γ в точке M с параметром t и осью Oz;
 - кривизну и кручение γ в точке M ;
 - длину дуги ${M_1}{M_2}$ кривой γ , если t_1 и t_2 параметры точек ${M_1}$ и ${M_2}$, причем $t_1 < t_2$;
 - естественную параметризацию γ .
- 2 Вычислите кривизну эллипса с полуосями a = 4 и b = 2 в его вершинах.
- 3 На кривой γ : $x = t \sin t$, $y = 1 \cos t$, $z = \sin t$ найти:
 - кривизну и кручение в произвольной точке;
 - репер Френе в точке с параметром $\frac{\pi}{2}$.
- 4 Составить натуральные уравнения кривой: γ : $x = e^t$, $y = t \cdot \sqrt{2}$, $z = e^{-t}$, $-\infty < t < +\infty$,
- 5 Найти общий вид кривых с постоянным кручением.

Контрольная работа № 2

- 1 На плоскости Oxy дана кривая $\gamma: x = f(u)$, y = g(u). Эта кривая вращается вокруг оси Oz. Составить уравнения полученной поверхности вращения. Доказать, что любая нормаль этой поверхности лежит в плоскости, проходящей через ось вращения.
- 2 Найти первую квадратичную форму поверхности, полученной в упражнении 1.

- 3 Покажите, что площади областей на параболоидах $z = \frac{a(x^2 + y^2)}{2}$ и z = axy, проектирующиеся на одну и ту же область плоскости Oxy, равны.
- 4 Найдите значение нормальной кривизны поверхности Φ в точке M(u;v) в направлении ее координатных линий (u),(v), если поверхность Φ задана системой: $x = \cos u, \ y = \sin u, \ z = v$. Найдите также значения средней и гауссовой кривизны Φ в точке M(u;v).
- 5 Найти геодезическую кривизну винтовой линии γ : $x = a \cos v$, $y = a \sin v$, z = bv на цилиндре, заданном системой: $x = a \cos v$, $y = a \sin v$, z = u.
- 6 Найти сумму внутренних углов сферического треугольника с помощью σ , если содержащая его сфера имеет радиус R_0 .

Вопросы к коллоквиуму

- 1. Элементарная, простая, общая кривая. Различные способы аналитического задания кривой.
- 2. Регулярная кривая. Условия гладкости.
- 3. Касательная кривой.
- 4. Соприкасающаяся плоскость кривой.
- 5. Длина дуги кривой. Естественная параметризация кривой.
- 6. Кривизна кривой.
- 7. Кручение кривой.
- 8. Вычислительные формулы кривизны и кручения кривой.
- 9. Формулы Френе. Натуральные уравнения кривой.

Приложение Б

Технологическая карта

учебного модуля «Основы дифференциальной геометрии» семестр __8__, ЗЕТ_6__, вид аттестации - _экзамен, акад.часов_216_, баллов рейтинга_300

№ и наименование раздела учебного модуля, КП/КР					, ак.час	Форма текущего	Максим.	
		Ау д ЛЕК	циторн: ПЗ	ые заня ЛР	АТИЯ АСРС	CPC 90	контроля успев. (в соотв. с паспортом	кол-во баллов
		36	54	ЛР	18	90	ФОС)	рейтинга
УЭМ1 Основы теории кривых:		18	27	-	9	48		
1.1 Понятие кривой. Регулярные кривые. Способы аналитического задания кривых.	1-2	4	6	-	1	8	ДР1	3
1.2 Касательная кривой. Соприкасающаяся плоскость кривой.	3	2	3	-	2	8	ДР2 СР1	3 10
1.3 Длина дуги кривой, естественная параметризация кривой.	4-5	4	6	-	2	8	ДР3	3 8
1.4 Кривизна кривой.	6	2	3	-	2	8	ДР4 СР2	4 10
1.5 Кручение кривой.	7-8	4	6	-	1	10	ДР5	3
1.6 Формулы Френе. Натуральные уравнения кривой.	9	2	3	-	1	6	KP 1	25
							ДР6	4
							CP3	10
Рубежная аттестация (контрольный опрос КЛ 1)								50
Всего по УЭМ 1:								125
УЭМ2 Специальные вопросы элементарной геометрии:		18	27	-	9	42		
2.1 Понятие поверхности. Регулярная поверхность. Аналитическое задание поверхности.	10-11	4	6	-	2	7	ДР7	4
2.2 Касательная плоскость поверхности.	12-14	6	9	-	2	11	ДР8 СР4	4 10
2.3 Первая квадратичная форма поверхности и ее первые применения: длина кривой, угол между кривыми, площадь области на поверхности. Понятие о внутренней геометрии поверхности.	15	2	3	-	2	7	ДР9	4

2.4 Вторая квадратичная форма поверхности и ее геометрический смысл. Соприкасающийся параболоид поверхности. Типы точек поверхности. Главные кривизны и главные направления, формула Эйле-	16-17	4	6	-	2	9	ДР10 СР5	4 10
ра, средняя и гауссова кривизны.								
2.5 Деривационные формулы. Теорема egregium Гаусса. Теорема	18	2	3	-	1	8	KP 2	25
О.Бонне. Геодезическая кривизна кривой на поверхности, геодезиче-							ДР11	4
ские линии и их свойства. Теорема Гаусса-Бонне. Поверхности посто-							CP6	10
янной гауссовой кривизны.								
Рубежная аттестация (контрольный опрос КЛ 2)								50
Всего по УЭМ 2:								125
Экзамен								50
Итого:								300

Критерии оценки качества освоения студентами дисциплины

Трудоемкость дисциплины 6 ЗЕ - 300 б.

(в соответствии с Положением «Об организации учебного процесса по образовательным программам высшего образования»):

- оценка «удовлетворительно» 150 209;
- оценка «хорошо» 210 269;
- оценка «отлично» 270 300.

Карта учебно-методического обеспечения

Учебного модуля Основы дифференциальной геометрии

Направление **44.03.05** – **Педагогическое образование** (с двумя профилями подготовки), профиль – **Математика** и информатика

Форма обучения очная

Курс 4, Семестр 8

Часов: всего 216, лекций **36**, практ. занятий **54**, СРС ауд. **18**, СРС **126**

Выпускающая кафедра – Алгебры и геометрии

Таблица 1- Обеспечение учебного модуля учебными изданиями

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1 Атанасян Л.С. Геометрия: учебное пособие для физмат. фак. пед. вузов в 2 ч. Ч. 2. / Л.С. Атанасян, В.Т. Базылев. – 2-е изд. (гриф Минобрнауки). – М.: КноРус, 2011. –422 с.	10	
2 Гусева Н.И. Сборник задач по геометрии: учебное пособие для вузов: в 2 ч. Ч.2. (Гриф УМО) / Н.И. Гусева, Н.С. Денисова, О.Ю. Тесля. – М.: КноРус, 2012. – 527 с.	10	
3 Вернер А.Л. Геометрия: учебное пособие для вузов. Ч. 2./ А.Л. Вернер, Б.Е. Кантор, С.А. Франгулов. – СПб.: Специальная литература, 1997. 320 с.	19	
Учебно-методические издания		
4 Рабочая программа учебного модуля «Основы дифференциальной геометрии» для направления 44.03.05 — Педагогическое образование (с двумя профилями подготовки), профиль — Математика и информатика / Сост. Д.В. Коваленко. — Великий Новгород: НовГУ, 2017. — 14 с.		

Таблица 2 – Информационное обеспечение модуля

Назрания программного пролужта, интернот расурса	Электронн	Примечани
Название программного продукта, интернет-ресурса	ый адрес	e
	https://www.y	
	outube.com/pl	
1. Видеокурс Павла Шестопалова «Дифференциальная геометрия»	aylist?list=PL	
1. Видеокурс навла шестопалова «Дифференциальная геометрия»	dupor31ULXjI	
	4nfxCYctTHq	
	NaJ8GHNJu	
	http://www.et	
3. Видеолекции Фонда «Математические этюды»	udes.ru/ru/	

Таблица 3 – Дополнительная литература

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
--	-------------------------------	------------------

1. Шварц Дж. Дифференциальная геометрия и топология = Differential	2	
geometry and topology M.: Мир, 1970 233,[1]с Библиогр.:с.222-223.	2	

Действительно для Зав. кафедрой алге	я учебного года 201 [°] ебры и геометрии	7/2018	
1 1	подпись	Т.Г. Сук	ачева
	20	. Γ.	
СОГЛАСОВАНО			
НБ НовГУ:			
_	должность	подпись	расшифровка

Приложение Г

Экзаменационные вопросы

- 10. Элементарная, простая, общая кривая. Различные способы аналитического задания кривой.
- 11. Регулярная кривая. Условия гладкости.
- 12. Касательная кривой.
- 13. Соприкасающаяся плоскость кривой.
- 14. Длина дуги кривой. Естественная параметризация кривой.
- 15. Кривизна кривой.
- 16. Кручение кривой.
- 17. Вычислительные формулы кривизны и кручения кривой.
- 18. Формулы Френе. Натуральные уравнения кривой.
- 19. Элементарная, простая, общая поверхность Различные способы аналитического задания поверхности.
- 20. Регулярная поверхность. Условия гладкости.
- 21. Кривые на поверхности. Касательная плоскость поверхности.
- 22. Первая квадратичная форма поверхности и её строение.
- 23. Длина кривой на поверхности. Угол между кривыми на поверхности.
- 24. Площадь области на поверхности.
- 25. Изометричные поверхности.
- 26. Кривизна кривой, лежащей на поверхности. Вторая квадратичная форма поверхности и её геометрический смысл.
- 27. Соприкасающийся параболоид поверхности. Типы точек поверхности.
- 28. Нормальная и главные кривизны поверхности. Теорема Эйлера.
- 29. Вычисление главных кривизн и главных направлений на поверхности. Средняя и гауссова кривизны.
- 30. Деривационные формулы. Теорема egregium Гаусса.
- 31. Теорема О.Бонне о восстановлении поверхности по ее первой и второй квадратичным формам.
- 32. Геодезическая кривизна кривой на поверхности.
- 33. Геодезические линии и их свойства.
- 34. Теорема Гаусса-Бонне.
- 35. Поверхности постоянной гауссовой кривизны.

Приложение Д

Пример экзаменационного билета

Новгородский государственный университет имени Ярослава Мудрого Кафедра алгебры и геометрии

Экзаменационный билет № 2

Дисциплина «Основы дифференциальной геометрии» Для направления 44.03.05 — Педагогическое образование, одновременно два профиля «Математика и информатика»

- 1 Регулярная кривая. Условия гладкости.
- 2 Теорема О.Бонне о восстановлении поверхности по ее первой и второй квадратичным формам.
 - 3 Задача.

Принято на заседании кафедры	
Протокол №	
Заведующий кафедрой АГ	Сукачева Т.Г.