Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого»

Старорусский политехнический колледж (филиал)

УTI	ЗЕРЖД	ДАЮ :
Дир	ектор	колледжа
		Алексеева М.А.
‹ ‹	>>	2017г.

конспекты лекций

по дисциплине Элементы высшей математики

специальность 09.02.03 Программирование в компьютерных системах

Часть II

(объем аудиторных часов - 26)

Разработал Т.Е.Елисеева

Старая Русса 2017г.

РАСПРЕДЕЛЕНИЕ ФОНДА ВРЕМЕНИ ЛЕКЦИОННЫХ ЗАНЯТИЙ

Наименование раздела и темы лекции	Вид лекции	Кол-во часов по очной форме обучения
РАЗДЕЛ 5 ОСНОВЫ МАТЕМАТИЧЕСКОГО		8
АНАЛИЗА		
Тема 5.1 Последовательность. Предел	Текущая	2
последовательности		
Тема 5.2 Функция. Предел функции. Непрерывность	Текущая	6
функции		
РАЗДЕЛ 6 ДИФФЕРЕНЦИАЛЬНОЕ		8
исчисление функции одной		
НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ		
Тема 6.1 Дифференциальное исчисление функции	Текущая	4
одной независимой переменной		
Тема 6.2 Применение дифференциального	Текущая	4
исчисления для исследования функций и построения		
графиков		
РАЗДЕЛ 7 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ		10
ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ		
ПЕРЕМЕННОЙ		
Тема 7.1 Неопределенный интеграл	Текущая	4
Тема 7.2 Определенный интеграл	Текущая	4
Тема 7.3 Несобственный интеграл	Текущая	2

КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Общие компетенции (ОК)

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Профессиональные компетенции (ПК)

- ПК 1.1. Выполнять разработку спецификаций отдельных компонент.
- ПК 1.2. Осуществлять разработку кода программного продукта на основе готовых спецификаций на уровне модуля.
- ПК 2.4. Реализовывать методы и технологии защиты информации в базах данных.
- ПК 3.4. Осуществлять разработку тестовых наборов и тестовых сценариев.

РАЗДЕЛ 5 ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

Тема 5.1 Последовательность. Предел последовательности

План:

- 1 Числовая последовательность, основные понятия
- 2 Предел последовательности, свойства предела

1 Числовая последовательность, основные понятия

Если по некоторому закону $\forall n \in N$ поставлено в соответствие вполне определенное число x_n , то говорят, что задана **числовая последовательность**

$$X_1, X_2, ..., X_n$$
...

Числа $x_1, x_2, ..., x_n$ называют элементами (членами) последовательности.

Символ x_n - общий элемент (член) последовательности или n—ый член последовательности.

Коротко последовательность обозначают символом $\{x_n\}$ или (x_n) .

2 Предел последовательности, свойства предела

Число \pmb{b} называют \pmb{npede} лом \pmb{noc} ле \pmb{dosame} льности (x_n) , если для $\forall \varepsilon > 0$ найдется номер $n_0 \in N$, такой что для любого $n > n_0$ выполняется неравенство $|x_n - b| < \varepsilon$.

Предел числовой последовательности обозначается $\lim_{n\to\infty}x_n=b$.

Последовательность (x_n) называется **бесконечно малой**, если $\lim_{n\to\infty} x_n = 0$.

Последовательность (x_n) называется *бесконечно большой*, если последовательность $\left(\frac{1}{x_n}\right)$ - бесконечно малая (и наоборот).

B этом случае пишут $\lim_{n\to\infty} x_n = \infty$ $\begin{bmatrix} +\infty, \text{если } x_n > 0, \\ -\infty, \text{если } x_n < 0. \end{bmatrix}$

Свойства пределов последовательности

1⁰ (о пределе суммы):

Если последовательности (x_n) и (y_n) сходятся, то сходится и их сумма (разность) и предел суммы (разности) равен сумме пределов:

$$\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n.$$

2^0 (о пределе произведения):

Если последовательности (x_n) и (y_n) сходятся, то сходится и их произведение $(x_n \cdot y_n)$ и предел произведения равен произведению пределов:

$$\lim_{n\to\infty} (x_n \cdot y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n.$$

Следствие: Постоянный множитель $c \in R$ можно вынести за знак предела:

$$\lim_{n\to\infty} (c\cdot x_n) = c\cdot \lim_{n\to\infty} x_n.$$

3⁰ (о пределе частного):

Если последовательности (x_n) и (y_n) сходятся, то $\left(\frac{x_n}{y_n}\right)$ также сходится и предел частного равен частному пределов:

$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}, \quad \lim_{n\to\infty} y_n \neq 0.$$

 $4^0 \quad \text{Если последовательность } \left(x_n\right) \quad \text{- сходится и } \lim_{n\to\infty} x_n > c \;, \; \text{то } x_n > c \left(x_n < c\right)$ для всех $n > n_0$.

50 (Предельный переход в неравенстве):

Если последовательности (x_n) и (y_n) - сходятся и $(x_n) < (y_n)$ для $\forall n > n_0$, то

$$\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n.$$

 6^0 (*Предел промежуточной последовательности*) — принцип двух милиционеров:

Если последовательность (x_n) и (y_n) - сходятся к одному и тому же пределу b , а последовательность (a_n) такова, что

$$x_n \le a_n \le y_n$$
 для $\forall n \in N$, то и $\lim_{n \to \infty} a_n = b$.

Пример 1 Вычислить предел последовательности $x_n = \frac{5n+2}{3n-1}$.

Решение: x_n представляет собой частное двух многочленов. При $n \to \infty$ числитель и знаменатель являются величинами бесконечно большими.

Следовательно, имеем неопределенность вида $\left[\frac{\infty}{\infty}\right]$ и применить теорему о пределе частного нельзя.

Правило. Чтобы раскрыть неопределенность вида $\left[\frac{\infty}{\infty}\right]$, заданную отношением двух многочленов, надо и числитель, и знаменатель дроби разделить на старшую степень n.

Таким образом, разделим и числитель, и знаменатель на n.

Получим:

$$\lim_{n \to \infty} \frac{5n+2}{3n-1} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{\frac{5n+2}{n}}{\frac{3n-1}{n}} = \lim_{n \to \infty} \frac{5+\frac{2}{n}}{3-\frac{1}{n}} = \frac{5}{3},$$

т.к. при $n \to \infty$ каждая из дробей $\frac{2}{n}$ и $\frac{1}{n}$ стремится к нулю.

Пример 2 Вычислить предел $\lim_{n\to\infty} \frac{4-n}{n^2+2n-1}$.

Решение: Это неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Разделим числитель и знаменатель дроби на старшую степень n, т.е. на n^2 :

$$\lim_{n\to\infty} \frac{4-n}{n^2 + 2n - 1} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{\frac{4}{n^2} - \frac{1}{n}}{1 + \frac{2}{n} - \frac{1}{n^2}} = 0,$$

т.к. числитель дроби стремится к нулю, а знаменатель к пределу отличному от нуля.

Пример 3 Вычислить предел $\lim_{n\to\infty} \frac{5n^3 - 4n + 2}{7n^2 + 3n}$.

Peшение: Имеет место неопределенность вида $\left\lfloor \frac{\infty}{\infty} \right\rfloor$. Разделим числитель и знаменатель на n^3 .

Получим
$$\lim_{n\to\infty} \frac{5n^3 - 4n + 2}{7n^2 + 3n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{5 - \frac{4}{n^2} + \frac{2}{n^3}}{\frac{7}{n} + \frac{3}{n^2}} = \infty,$$

т.к. предел числителя отличен от нуля, а знаменателя – стремится к нулю.

Пример 4 Вычислить предел
$$\lim_{n\to\infty} \left(\sqrt{n^2 + 2n - 3} - \sqrt{n^2 + 3n} \right)$$
.

Решение: При $n \to \infty$ выражение $(\sqrt{n^2 + 2n - 3} - \sqrt{n^2 + 3n})$ представляет собой неопределенность вида $[\infty - \infty]$.

Правило. Чтобы раскрыть неопределенность вида $[\infty - \infty]$ надо домножить и разделить данное иррациональное выражение на ему сопряженное.

Итак, умножим и разделим данное выражение на $(\sqrt{n^2 + 2n - 3} + \sqrt{n^2 + 3n})$.

Получим

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 2n - 3} - \sqrt{n^2 + 3n} \right) = \left[\infty - \infty \right] = \lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 2n - 3} - \sqrt{n^2 + 3n} \right) \sqrt{n^2 + 2n - 3} + \sqrt{n^2 + 3n}}{\sqrt{n^2 + 2n - 3} + \sqrt{n^2 + 3n}} = \lim_{n \to \infty} \frac{n^2 + 2n - 3 - \left(n^2 + 3n\right)}{\sqrt{n^2 + 2n - 3} + \sqrt{n^2 + 3n}} = \lim_{n \to \infty} \frac{-n - 3}{\sqrt{n^2 + 2n - 3} + \sqrt{n^2 + 3n}} = \left[\frac{\infty}{\infty} \right] = \lim_{n \to \infty} \frac{-1 - \frac{3}{n}}{\sqrt{1 + \frac{2}{n} - \frac{3}{n^2}} + \sqrt{1 + \frac{3}{n}}} = -1.$$

Пример 5 Вычислить
$$\lim_{n\to\infty} \frac{\sqrt{3n^2 + 2n - 1} + 2n}{3n + 4}$$
.

Peшение: Это неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Делим числитель и знаменатель на n:

$$\lim_{n\to\infty} \frac{\sqrt{3n^2 + 2n - 1} + 2n}{3n + 4} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to\infty} \frac{\sqrt{3 + \frac{2}{n} - \frac{1}{n^2}} + 2}{3 + \frac{4}{n}} = \frac{\sqrt{3} + 2}{3}.$$

Пример 6 Вычислить предел
$$\lim_{n\to\infty} \frac{(3n+2)^{100}}{(3n-1)^{98}(n+2)^2}$$
.

Решение: Вынесем за скобки в числителе и знаменателе члены, содержащие переменную:

$$\lim_{n \to \infty} \frac{3^{100} \cdot n^{100} \left(1 - \frac{2}{3n}\right)^{100}}{3^{98} \cdot n^{100} \left(1 - \frac{1}{3n}\right)^{98} \left(1 + \frac{2}{n}\right)^{2}} = \lim_{n \to \infty} 9 \frac{\left(1 + \frac{2}{3n}\right)^{100}}{\left(1 - \frac{1}{3n}\right)^{98} \left(1 + \frac{2}{n}\right)^{2}} = 9.$$

Тема 5.2 Функция. Предел функции. Непрерывность функции

План:

- 1 Функция одной переменной, основные понятия
- 2 Предел функции, теоремы о пределах
- 3 Бесконечно малые и бесконечно большие функции
- 4 Односторонние пределы
- 5 Замечательные пределы
- 6 Сравнение бесконечно малых. Применение бесконечно малых к вычислению пределов
- 7 Непрерывность функции
- 8 Точки разрыва функции и их классификация

1 Функция одной переменной, основные понятия

Пусть X и Y – два произвольных множества и $x \in X$, $y \in Y$.

Если каждому значению переменной $x \in X$ ставится в соответствие вполне определенный элемент $y \in Y$, то говорят, что на множестве X задана функция y = f(x) или y = y(x).

При этом переменная x называется *аргументом функции* или независимой переменной, а множество X – областью определения функции и обозначаются D(x).

Число y — это *значение функции* или зависимая переменная, а множество Y — область значений функции, которую обозначают E(y).

Буква f обозначает закон соответствия.

Частным значением функции y = f(x) при фиксированном значении аргумента $x = x_0$ называют $y_0 = f(x_0)$.

Графиком функции y = f(x) называют геометрическое место точек M(x; f(x)), где $x \in D(x)$ и $f(x) \in E(y)$.

Способы задания функции

1) *Аналитический способ* – способ задания функции с помощью формулы.

Различают несколько способов аналитического задания функции:

а) Функция задана *явно* формулой y = f(x).

Пример 1
$$y = \frac{x^2 + 2}{x - 1}$$
, где $D(x) = (-\infty; 1) \cup (1; +\infty)$.

б) Функция задана *неявно* уравнением, связывающем x и y: F(x;y) = 0.

Пример 2 $x^2 + y^2 = r^2$ - уравнение окружности с центром в начале координат и радиусом r. Если выразить из этого уравнения y через x, то получится две функции: $y = \sqrt{r^2 - x^2}$ и $y = -\sqrt{r^2 - x^2}$, которые имеют область определения D(y) = [-r; r], а области значений этих функций будут: для первой - [0; r], для второй - [-r; 0].

в) Функция задана *параметрически* с помощью некоторого параметра t, причем и аргумент x, и функция y зависят от этого параметра:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Пример 3 Можно задать окружность $x^2 + y^2 = r^2$ с помощью параметрических уравнений:

$$\begin{cases} x = r \cos t \\ y = r \sin t \end{cases}$$

2) Табличный способ задания функции.

Например, таблицы Брадиса задают функции $y = \sin x$, $y = \cos x$ и другие.

3) *Графический способ задания функции*, когда зависимость функции от её аргумента задается графически.

Сложная и обратная функции

Пусть функция y = f(u) определена на множестве D(x), а функция u = g(x) определена на D(g), причем $E(g) \subset D(x)$.

Тогда функция y = F(x) = f(g(x)) называется сложной функцией (или функцией от функции или суперпозицией функций f и g).

Пусть задана функция y = f(x) взаимно однозначно отображающая множество X = D(x) на множество Y = E(y).

Тогда функция x = g(y) называется *обратной* к функции y = f(x).

То есть любому $y \in E(y)$ соответствует единственное значение $x \in D(x)$, при котором верно равенство y = f(x).

Замечание. Графики функций y = f(x) и x = g(y) представляют одну и ту же кривую. Если же у обратной функции независимую переменную обозначить x, а зависимую через y, то графики функций y = f(x) и y = g(x), будут симметричны относительно биссектрисы первого и третьего координатных углов.

Основные элементарные функции:

y = const (постоянная функция). D(x) = R; E(y) = c.

 $y = x^n$ (степенная функция), $n \in R$, E(y), D(x) зависят от n.

 $y = a^x$ (показательная функция), $a^a > 0$, $a^a \ne 1$, D(x) = R, $E(y) = (0; +\infty)$.

 $y = \log_a x$ (логарифмическая функция), $a^a > 0$, $a^a \ne 1$, E(y) = R, $D(x) = (0; +\infty)$.

Тригонометрические функции:

$$y = \sin x$$
, $D(y) = R$, $E(y) = [-1;+1]$.

$$y = \cos x$$
, $D(y) = R$, $E(y) = [-1;+1]$.

$$y = tgx$$
, $D(y) = \bigcup_{n \in \mathbb{Z}} (-\frac{\pi}{2} + \pi n, \frac{\pi}{2} + \pi n)$, $E(y) = R$.

$$y = \operatorname{ctg} x$$
, $D(y) = \bigcup_{n \in \mathbb{Z}} (\pi n, \pi + \pi n)$, $E(y) = \mathbb{R}$.

Обратные тригонометрические функции:

$$y = arcsin x$$
, $D(y) = [-1;+1]$, $E(y) = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

$$y = arccos x$$
, $D(y) = [-1;+1]$, $E(y) = [0;\pi]$.

$$y = arctgx$$
, $D(y) = R$, $E(y) = \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

$$y = arcctgx$$
, $D(y) = R$, $E(y) = (0; \pi)$.

Графики обратных тригонометрических функций представлены на рисунках 1,2,3,4

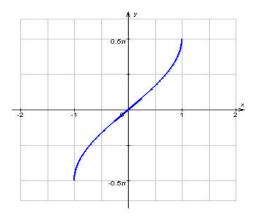


Рисунок 1- y = arcsinx

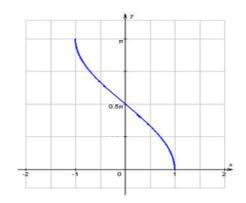


Рисунок 2 - y = arccosx

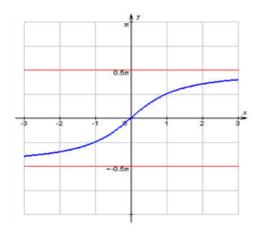


Рисунок 3- y = arctgx

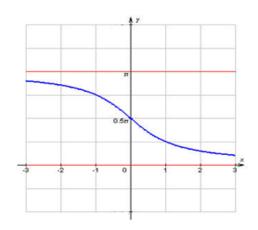


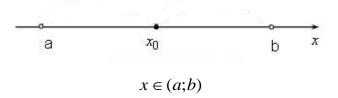
Рисунок 4 - y = arcctgx

Элементарной функцией называется функция, составленная из основных элементарных функций с помощью конечного числа операций сложения, вычитания, умножения, деления и суперпозиции.

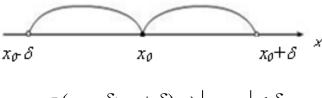
Например: $y = \log_2(\sin x + \cos^2 x + 3)$ - элементарная функция.

2 Предел функции

Окрестностью точки х₀ называется любой интервал, содержащий точку x_0 :



 δ - окрестностью точки x_0 называется интервал (x_0 - δ ; x_0 + δ), длина которого 2 δ , симметричный относительно x_0 :



$$x \in (x_0 - \delta; x_0 + \delta) \Longrightarrow |x - x_0| < \delta.$$

Проколомой δ - окрестностью мочки x_0 называется δ - окрестность точки x_0 без самой точки x_0 :

$$x_0 - \delta$$
 x_0 $x_0 + \delta$ x

$$x \in (x_0 - \delta; x_0) \cup (x_0; x_0 + \delta) \Rightarrow 0 < |x - x_0| < \delta.$$

Пусть точка x определена в некоторой окрестности точки x_0 за исключением, может быть, самой точки x_0 .

Число b называется *пределом функции* f(x) ϵ *точке* x_0 , если для любого сколь угодно малого числа $\varepsilon > 0$ найдется такое число $\delta > 0$, что для всех $x \neq x_0$, удовлетворяющих неравенству $|x-x_0| < \delta$, выполняется неравенство $|f(x) - b| < \varepsilon$.

Записывают

$$\lim_{x \to x_0} f(x) = b \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \neq x_0)(|x - x_0| < \delta \implies |f(x) - b| < \varepsilon).$$

Основные теоремы о пределах

Теорема 1 (о единственности предела).

Если функция f(x) в точке x_0 имеет предел, то он единственный.

Теорема 2 Предел суммы (разности) функций равен сумме (разности) их пределов, если эти пределы существуют.

$$\lim_{x\to x_0} (f(x)\pm g(x)) = \lim_{x\to x_0} f(x)\pm \lim_{x\to x_0} g(x).$$

Теорема 3 Предел произведения функций равен произведению их пределов, если последние существуют

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x).$$

Следствие: Постоянный множитель можно выносить за знак предела

$$\lim_{x \to x_0} (c \cdot f(x)) = c \lim_{x \to x_0} f(x).$$

Теорема 4 Предел отношения двух функций равен отношению их пределов, если последние существуют и предел делителя отличен от нуля

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \text{ если } \lim_{x \to x_0} g(x) \neq 0.$$

Теорема 5 (принцип двух милиционеров).

Пусть в некоторой окрестности точки x_0 , за исключением, может быть, самой точки x_0 , выполняется неравенство

$$\varphi(x) \le f(x) \le g(x)$$
.

Тогда, если $\lim_{x \to x_0} \varphi(x) = b$, $\lim_{x \to x_0} g(x) = b$, то и $\lim_{x \to x_0} f(x) = b$.

Приведенные теоремы облегчают вычисления пределов.

Пример 4 Вычислить $\lim_{x\to 1} (x^4 - 3x^3 + 2x^2 - x + 4)$.

Решение: Применим последовательно теоремы: о пределе алгебраической суммы, о пределе произведения и ее следствие.

Имеем

$$\lim_{x \to 1} (x^4 - 3x^3 + 2x^2 - x + 4) = \lim_{x \to 1} x^4 - \lim_{x \to 1} 3x^3 + \lim_{x \to 1} 2x^2 - \lim_{x \to 1} x + \lim_{x \to 1} 4 =$$

$$= \lim_{x \to 1} x^4 - 3\lim_{x \to 1} x^3 + 2\lim_{x \to 1} x^2 - \lim_{x \to 1} x + 4 = 1^4 - 3 \cdot 1^3 + 2 \cdot 1^2 - 1 + 4 = 3.$$

Замечание: Применение теорем обычно производится в уме, поэтому часто подробная запись решения опускается.

3 Бесконечно малые и бесконечно большие функции

Функцию f(x) называют **бесконечно малой** в точке x_0 , если

$$\lim_{x \to x_0} f(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x) (0 < |x - x_0| < \delta \implies |f(x)| < \varepsilon).$$

Свойства бесконечно малой функции

- 1^{0} Сумма бесконечного числа функций бесконечно малых в точке x_{0} есть функция бесконечно малая в этой точке.
- 2^0 Произведение бесконечно малой функции в точке x_0 на функцию, ограниченную в некоторой окрестности этой точки, есть функция бесконечно малая в точке x_0 .
- 3^0 (Необходимое и достаточное условие существования предела). Для того чтобы $\lim_{x\to x_0} f(x) = b$ необходимо, чтобы (f(x)-b) была бесконечно малой или другими словами $f(x) = b + \alpha(x)$, где $\alpha(x)$ функция бесконечно малая в точке x_0 .

Функцию f(x) называют *бесконечно большой* в точке x_0 , если функция $\frac{1}{f(x)}$ - бесконечно малая в точке x_0 , это равносильно следующему:

$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x) (0 < |x - x_0| < \delta \Rightarrow |f(x)| > \varepsilon)$$

Не исключено, что x_0 - это несобственная точка.

Свойства бесконечно большой функции

 1^{0} Сумма конечного числа бесконечно больших функций в точке x_{0} есть функция бесконечно большая в этой точке.

 2^0 Сумма бесконечно большой функции в точке x_0 и ограниченной в некоторой окрестности точки x_0 функции является бесконечно большой функцией.

 3^0 Произведение бесконечно большой функции в точке x_0 на функцию, которая имеет отличный от нуля предел, называется бесконечно большой функцией.

 4^0 Частное от деления бесконечно большой функции в точке $x_{\scriptscriptstyle 0}$ на функцию, имеющую предел в этой точке, является бесконечно большой функцией.

Пример 5 Вычислить $\lim_{x\to -2} \frac{3}{8+4x}$.

Решение: Предел знаменателя равен нулю, $\lim_{x\to -2} (8+4x) = 0$. В этом случае применить теорему о пределе частного нельзя, т.к. деление на нуль невозможно. Но, если $\lim_{x\to -2} (8+4x) = 0$, то величина (8+4x) есть бесконечно малая, а обратная ей величина $\frac{1}{8+4x}$ будет бесконечно больной. Следовательно, при $x\to -2$ произведение $3\cdot\frac{1}{8+4x}$ есть бесконечно большая величина и

$$\lim_{x \to -2} \frac{3}{8 + 4x} = \infty.$$

Пример 6 Вычислить $\lim_{x\to\infty} \frac{x^2 - 3x + 2}{2x^2 + x - 1}$.

Решение: Числитель и знаменатель дроби неограниченно возрастают при $x \to \infty$, т.е. имеют место неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Разделим и числитель и знаменатель на старшую степень x, т.е. на x^2 .

$$\lim_{x \to \infty} \frac{x^2 - 3x + 2}{2x^2 + x - 1} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{1 - \frac{3}{x} + \frac{2}{x^2}}{2 + \frac{1}{x} - \frac{1}{x^2}} = \frac{1}{2},$$

т.к. при $x \to \infty$ каждая из дробей $\frac{3}{x}, \frac{2}{x^2}, \frac{1}{x}, \frac{1}{x^2}$ стремится к нулю.

Пример 7 Вычислить $\lim_{x\to -3} \frac{4x^2 + 11x - 3}{3x^2 + 10x + 3}$.

Решение: Подстановка предельного значения аргумента приводит к неопределенности вида $\left\lceil \frac{0}{0} \right\rceil$.

Правило: Чтобы раскрыть неопределенность вида $\left[\frac{0}{0}\right]$, заданную отношением двух многочленов, $\lim_{x\to x_0}\frac{a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0}{b_mx^m+b_{m-1}x^{m-1}+...+b_1x^1+b_0}$ надо и числитель, и знаменатель разделить на множитель $(x-x_0)$, используя

обычные правила алгебры. Итак, разделим числитель и знаменатель на (x+3):

Имеем: $\lim_{x \to -3} \frac{4x^2 + 11x - 3}{3x^2 + 10x + 3} = \left[\frac{0}{0}\right] = \lim_{x \to -3} \frac{(x+3)(4x-1)}{(x+3)(3x+1)} = \lim_{x \to -3} \frac{4x-1}{3x+1} = \frac{4 \cdot (-3) - 1}{3 \cdot (-3) + 1} = \frac{13}{8}$.

Пример 8 Вычислить $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$.

Peшение: В данном случае имеем неопределенность вида $\begin{bmatrix} 0\\0 \end{bmatrix}$.

Правило: Чтобы раскрыть неопределенность вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, в которой числитель или знаменатель иррациональны, надо и числитель, и знаменатель домножить на выражение, сопряженное данному иррациональному. Имеем

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(\sqrt{x+4} - 2)(\sqrt{x+4} + 2)}{x \cdot (\sqrt{x+4} + 2)} = \lim_{x \to 0} \frac{x+4-4}{x \cdot (\sqrt{x+4} + 2)} = \lim_{x \to 0} \frac{x}{x \cdot (\sqrt{x+4} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{x+4} + 2} = \frac{1}{4}.$$

Пример 9 Вычислить
$$\lim_{x\to -2} \left(\frac{1}{x+2} - \frac{12}{x^3+8} \right)$$
.

Решение: При $x \to -2$ функция представляет собой разность двух бесконечно больших величин, т.е. имеет место неопределенность вида $[\infty - \infty]$. Выполним вычитание дробей

$$\lim_{x \to -2} \left(\frac{1}{x+2} - \frac{12}{x^3 + 8} \right) = \left[\infty - \infty \right] = \lim_{x \to -2} \frac{x^2 - 2x + 4 - 12}{x^3 + 8} = \lim_{x \to -2} \frac{x^2 - 2x - 8}{x^3 + 8} = \left[\frac{0}{0} \right] = \lim_{x \to -2} \frac{(x+2)(x-4)}{(x+2)(x^2 - 2x + 4)} = \lim_{x \to -2} \frac{x - 4}{x^2 - 2x + 4} = -\frac{1}{2}.$$

Пример 10 Вычислить $\lim_{x\to\infty} (\sqrt[3]{x+2} - \sqrt[3]{x})$.

Pешение: Имеет место неопределенность вида [$\infty - \infty$].

Домножим числитель и знаменатель на выражение, дополняющее данное до разности кубов.

$$\lim_{x \to \infty} (\sqrt[3]{x+2} - \sqrt[3]{x}) = \left[\infty - \infty\right] = \lim_{x \to \infty} \frac{\left(\sqrt[3]{x+2} - \sqrt[3]{x}\right)\left(\sqrt[3]{(x+2)^2} + \sqrt[3]{x(x+2)} + \sqrt[3]{x^2}\right)}{\sqrt[3]{(x+2)^2} + \sqrt[3]{x(x+2)} + \sqrt[3]{x^2}} = \lim_{x \to \infty} \frac{x+2-x}{\sqrt[3]{(x+2)^2} + \sqrt[3]{x(x+2)} + \sqrt[3]{x^2}} = 0.$$

4 Односторонние пределы

Если при нахождении предела функции рассматривать значения x только справа от x_0 , то такой предел называется пределом справа.

Число b называют **пределом функции** f(x) ϵ **точке** x_0 **справо** (правосторонний предел функции), если выполняется следующее условие:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)(x \in (x_0; x_0 + \delta) \Rightarrow |f(x) - b| < \varepsilon).$$

и записывают

$$f(x+0) = \lim_{x \to x_0+0} f(x) = b$$
.

Если
$$x_0 = 0$$
, то пишут $f(+0) = \lim_{x \to +0} f(x) = b$.

Если при нахождении предела функции рассматривать значения x только слева от x_{0} , то такой предел называется пределом слева.

Число b называют *пределом функции* f(x) b *точке* x_0 *слева* (левосторонний предел функции), если выполняется следующее условие:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)(x \in (x_0 - \delta; x_0) \Rightarrow |f(x) - b| < \varepsilon)$$

и записывают

$$f(x_0 - 0) = \lim_{x \to x_0 - 0} f(x) = b$$
.

Если $x_0 = 0$, то пишут $f(-0) = \lim_{x \to -0} f(x) = b$.

Пределы слева и справа иначе называют односторонними пределами.

Теорема: Для того чтобы функция f(x) в точке x_0 имела предел необходимо, чтобы для нее в этой точке существовали равные односторонние пределы. При этом

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x).$$

Пример 11 Вычислить односторонние пределы функции

$$f(x) = \begin{cases} \sin x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$

Решение: $f(-0) = \lim_{x \to -0} \sin x = 0$, $f(+0) = \lim_{x \to +0} \sin(x^2 + 1) = 1$.

5 Замечательные пределы

Первый замечательный предел

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Используется при раскрытии неопределенностей вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ в тригонометрических выражениях.

Следствия первого замечательного предела:

$$\mathbf{1^0} \quad \lim_{x \to 0} \frac{tgx}{x} = 1; \qquad \qquad \mathbf{3^0} \quad \lim_{x \to 0} \frac{tg \, \alpha x}{x} = \alpha;$$

$$\mathbf{2^0} \quad \lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha ; \qquad \mathbf{4^0} \quad \lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} = \frac{\alpha}{\beta} (\beta \neq 0);$$

50
$$\lim_{x\to 0} \frac{tg \, \alpha x}{tg \, \beta x} = \frac{\alpha}{\beta} (\beta \neq 0);$$

$$8^0 \quad \lim_{x\to 0} \frac{arctgx}{x} = 1;$$

60
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
;

90
$$\lim_{x\to 0} \frac{\arcsin \alpha x}{x} = \alpha$$
;

$$7^0 \quad \lim_{x\to 0} \frac{\arcsin x}{x} = 1;$$

$$10^0 \lim_{x\to 0} \frac{\arctan \alpha x}{x} = \alpha.$$

Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to 0} \left(1 + x\right)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

используют при вычислении пределов вида $\lim_{x \to x_0} u(x)^{\nu(x)}$, где

$$\lim_{x\to x_0} u(x) = 1, \quad \lim_{x\to x_0} v(x) = \infty.$$

(что дает неопределенность вида 1^{∞}).

Следствия второго замечательного предела:

$$\mathbf{1^0} \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \; ;$$

$$5^{0} \quad \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1;$$

$$2^0 \quad \lim_{x\to\infty} \left(1+\frac{k}{x}\right)^x = e^k;$$

6⁰
$$\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$$
;

$$3^{0}$$
 $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1;$

70
$$\lim_{x\to\infty}\frac{(1+x)^{\mu}-1}{x}=\mu$$
.

$$\mathbf{4^0} \lim_{x\to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a};$$

6 Сравнение бесконечно малых. Применение бесконечно малых к вычислению пределов

Пусть $\alpha(x)$ и $\beta(x)$ - бесконечно малые функции в некоторой точке x_0 .

Бесконечно малое α является бесконечно малой более высокого (низкого) порядка, чем β , если

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0 \ (\infty).$$

Две бесконечно малые α и β называют *бесконечно малыми одного порядка*, если

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = c \neq 0.$$

 α и β называют эквивалентными бесконечно малыми в точке x_0 (и записывают $\alpha \sim \beta$), если

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1.$$

Таблица эквивалентных бесконечно малых функций				
Пусть $\alpha(x)$ – бесконечно малая функция при $x \to x_0$				
$\sin\alpha(x) \sim \alpha(x)$	$\ln(1+\alpha(x)) \sim \alpha(x)$			
$tg\alpha(x) \sim \alpha(x)$	$e^{\alpha(x)} - 1 \sim \alpha(x)$			
$\arcsin \alpha(x) \sim \alpha(x)$	$a^{\alpha(x)} - 1 \sim \alpha(x) \cdot \ln a$			
$arctg \alpha(x) \sim \alpha(x)$	$(1+\alpha(x))^{\mu}-1\sim\mu\cdot\alpha(x)$			
$1 - \cos \alpha(x) \sim \frac{1}{2} (\alpha(x))^2$	$\log_a (1 + \alpha(x)) \sim \frac{1}{\ln a} \cdot \alpha(x)$			

Применение эквивалентных функций для вычисления пределов

Теорема (Принцип замены эквивалентных функций).

Если $f(x) \sim h(x)$ при $x \to x_0$, то

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x)}{g(x)}; \ \lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} h(x)g(x).$$

Пример 12 Вычислить $\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$.

Решение: 1 способ:

$$\lim_{x \to 0} \frac{tg \ x}{x} = \left\lceil \frac{0}{0} \right\rceil = \lim_{x \to 0} \frac{\sin x}{x \cdot \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1.$$

2 способ: используем первое следствие первого замечательного предела

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \left\lceil \frac{0}{0} \right\rceil = 1.$$

3 способ: используем замену эквивалентной бесконечно малой

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{x}{x} = 1.$$

Пример 13 Вычислить $\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$.

Решение: 1 способ:

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{\sin^2 x} = 2 \cdot \lim_{x \to 0} \frac{\sin \frac{x}{2} \cdot \sin \frac{x}{2}}{\sin x \cdot \sin x} = 2 \cdot \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \frac{\frac{1}{2}}{\frac{\sin x}{x}} \cdot \frac{\frac{1}{2}}{\frac{\sin x}{x}} \cdot \frac{\frac{1}{2}}{\frac{\sin x}{x}}\right) = \frac{1}{2}.$$

2 способ: используем первое следствие первого замечательного предела

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{(1 - \cos x)x^2}{x^2 \cdot \sin^2 x} = \lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} \cdot \frac{x^2}{\sin^2 x}\right) = \frac{1}{2} \cdot 1 = \frac{1}{2}.$$

3 способ: используем замену эквивалентной бесконечно малой

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{x \cdot x} = \frac{1}{2} \lim_{x \to 0} \frac{x^2}{x^2} = \frac{1}{2}.$$

Пример 14 Вычислить $\lim_{x\to\infty} \left(\frac{x}{3+x}\right)^{2x}$.

Решение:

$$\lim_{x \to \infty} \left(\frac{x}{3+x} \right)^{2x} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left(\frac{1}{\frac{3}{x}+1} \right)^{2x} = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{-2x} = \lim_{x \to \infty} \left(\left(1 + \frac{3}{x} \right)^{\frac{x}{3}} \right)^{-6} = e^{-6}.$$

7 Непрерывность функции

Функция f(x) называется **непрерывной в точке** $x_0 \in D(x)$, если она определена в некоторой окрестности точки x_0 и предел f(x) в точке x_0 равен значению функции в этой точке, то есть:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Функция f(x) называется **непрерывной в точке** $x_0 \in D(x)$, если она определена в некоторой окрестности этой точки и бесконечно малому приращению аргумента $\Delta x = x - x_0$ соответствует бесконечно малое приращение функции $\Delta f = f(x_0 + \Delta x) - f(x_0)$, то есть: $\lim_{\Delta x \to 0} \Delta f = 0$.

Функция f(x) называется **непрерывной на промежутке**, если она непрерывна в каждой точке этого промежутка.

Теоремы о непрерывных функциях

Теорема 1 Если функции f(x) и g(x) непрерывны в точке x_0 , то функции $c \cdot f(x)$ (c=const), $f(x) \pm g(x)$, $f(x) \cdot g(x)$ и $\frac{f(x)}{g(x)}$, если $g(x) \neq 0$, также непрерывны в точке x_0 .

Теорема 2 Если функция u=u(x) непрерывна в точке x_0 и функция y=f(u) непрерывна в точке $u_0=u(x_0)$, то сложная функция y=f(u(x)) непрерывна в точке x_0 .

Теорема 3 Все элементарные функции непрерывны в каждой точке области их определения.

8 Точки разрыва функции и их классификация

Точка x_0 называется **точкой разрыва** функции f(x), если в этой точке функция либо не определена, либо определена, но нарушено хотя бы одно из условий определения непрерывности f(x).

Классификация точек разрыва

1) точка x_0 называется **точкой разрыва І рода**, если существуют конечные односторонние пределы.

При этом

если
$$\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 - 0} f(x)$$
, то x_0 называют **точкой скачка**;

если $\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) \neq \lim_{x \to x_0} f(x)$, то x_0 называют **точкой** устранимого разрыва.

2) точка x_0 называется **точкой разрыва II рода**, если хотя бы один из односторонних пределов равен бесконечности или не существует.

Пример 15 Исследовать на непрерывность функцию

$$f(x) = \begin{cases} 2^x, & -\infty < x \le 1, \\ \frac{1}{x-1}, & 1 < x \le 3, \\ x - 2, 5, & 3 < x < +\infty. \end{cases}$$

Решение: Функция задана на трех промежутках разными формулами. На каждом из промежутков функция непрерывна. Рассмотрим границы промежутков: x = 1 и x = 3. В точке x = 1 замечаем, что

$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1} 2^x = 2; \quad \lim_{x \to 1+0} f(x) = \lim_{x \to 1} \frac{1}{x-1} = \infty.$$

Следовательно, x = 1 — точка разрыва II рода.

В точке x = 3 вычисляем:

$$\lim_{x \to 3-0} f(x) = \lim_{x \to 3} \frac{1}{x-1} = 0.5; \quad \lim_{x \to 3+0} f(x) = \lim_{x \to 3} (x-2.5) = 0.5; \quad f(3) = 0.5.$$

Таким образом, в точке x = 3 функция непрерывна.

Пример 16 Исследовать функцию на непрерывность и точки разрыва.

$$f(x) = \begin{cases} \cos\frac{\pi x}{2}, \mathring{a}\tilde{n}\ddot{e}\grave{e}|x| \le 1\\ |1 - x|, \mathring{a}\tilde{n}\ddot{e}\grave{e}|x| > 1 \end{cases}$$

Решение. На промежутке (- ∞ ;-1) f(x)= -x+1, на (-1;1) f(x) = $\cos \frac{\pi x}{2}$ и на (1;+ ∞) f(x) = x-1.

На этих промежутках f(x) элементарная функция, непрерывна при всех x, принадлежащих этим промежуткам. Необходимо проверить непрерывность в точках x=-1 и x=1.

1)
$$\lim_{x \to -1-0} f(x) = \lim_{x \to -1} (-x+1) = 2$$

2)
$$\lim_{x \to -1+0} f(x) = \lim_{x \to -1} \cos \frac{\pi x}{2} = \cos(-\frac{\pi}{2}) = 0$$

Получили, что $f(-1-0) \neq f(-1+0) => x = -1$ — точка разрыва f(x) I рода.

3)
$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1} \cos \frac{\pi x}{2} = \cos \frac{\pi}{2} = 0$$

4)
$$\lim_{x \to 1+0} f(x) = \lim_{x \to 1} (x-1) = 0$$

Получили, что $f(1-0)=f(1+0)=f(1)=0 \Longrightarrow x=1$ — точка непрерывности функции f(x).

f(x) непрерывна на $(-\infty;-1)$ и на $(-1;+\infty)$, точка x=-1 — точка разрыва I рода.

Пример 17 Исследовать функцию $f(x) = \frac{1}{x}$ на непрерывность

Решение. На промежутках (-∞;0) и на (0;+∞) f(x) непрерывна. Исследуем точку x=0 \notin D(x).

1)
$$\lim_{x \to +0} f(x) = \lim_{x \to +0} \frac{1}{x} = +\infty$$

2)
$$\lim_{x \to -0} f(x) = \lim_{x \to 0} \frac{1}{x} = -\infty \Rightarrow$$

=> x = 0 – точка разрыва f(x) II рода.

РАЗДЕЛ 6 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

Тема 6.1 Дифференциальное исчисление функции одной независимой переменной

- 1 Определение производной. Геометрический и механический смысл производной
- 2 Вычисление производной
- 3 Производные высших порядков
- 4 Дифференциал функции

1 Определение производной. Геометрический и механический смысл производной

Пусть дана функция y = f(x), определенная на множестве D(x). Рассмотрим точку $x \in D(x)$ и некоторое число Δx такое, чтобы точка $x + \Delta x \in D(x)$. Это число Δx называется *приращением аргумента x*.

Приращением функции y = f(x) называется разность $f(x+\Delta x) - f(x)$. Приращение функции y = f(x) обозначают Δy . То есть $\Delta y = f(x+\Delta x) - f(x)$.

Производной функции y = f(x) называется предел отношения приращения функции к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю.

Производную функции y = f(x) обозначают: y', f'(x) или $\frac{dy}{dx}$.

Поэтому можно записать:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
.

Если этот предел конечный, то производная существует и функция f(x) называется **дифференцируемой** в точке x . Процесс нахождения производной

называется дифференцированием функции.

Пример 1 Исходя из определения, найти производную функции $y = \frac{1}{x}$.

Решение.
$$\Delta y = f(x + \Delta x) - f(x) =$$

$$= \frac{1}{x + \Delta x} - \frac{1}{x} = \frac{x - (x + \Delta x)}{x(x + \Delta x)} = \frac{x - x - \Delta x}{x(x + \Delta x)} = \frac{-\Delta x}{x(x + \Delta x)} \Rightarrow \Delta y = \frac{-\Delta x}{x(x + \Delta x)}.$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{x(x + \Delta x) \cdot \Delta x} = \lim_{\Delta x \to 0} \frac{-1}{x^2 + x \cdot \Delta x} = \frac{-1}{x^2 + x \cdot 0} = -\frac{1}{x^2}.$$

T.e.
$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

Механический смысл производной

Пусть материальная точка движется по прямой по закону S=S(t) (рисунок6)

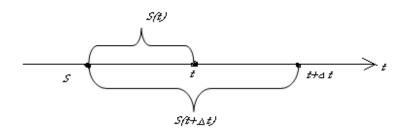


Рисунок 5 - Движение материальной точки

Тогда $\Delta S = S(t + \Delta t) - S(t)$ — расстояние, пройденное за время Δt . Тогда средняя скорость движения:

$$Vcp = \frac{\Delta S}{\Delta t}$$
.

Чтобы найти скорость движения в момент времени t, надо рассмотреть предел Vcp при $\Delta t \rightarrow 0$:

$$V(t) = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = S'(t).$$

Значит, производная от пути S(t) равна мгновенной скорости точки в момент времени t:

$$S'(t) = V(t)$$
.

Геометрический смысл производной

Рассмотрим график функции y = f(x) в окрестности фиксированной точки x_0 (Рисунок 6).

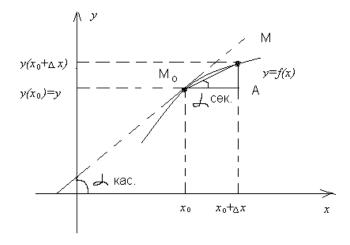


Рисунок 6 - Геометрический смысл производной

Точка $M_0(x_0;y(x_0))$ — фиксированная точка графика y=f(x). Точка $M(x_0+\Delta x;y(x_0+\Delta x))$ при различных значениях Δx — любая точка на графике. Если точка M приближается κ точке M_0 (при этом $\Delta x \to 0$), то секущая линия M_0M стремится κ своему предельному положению, называемому *касательной* κ линии y=f(x) в точке M_0 .

Рассмотрим Δ М₀МА: $tg\alpha_{\rm cek} = \frac{MA}{M_0A} = \frac{\Delta y}{\Delta x}$, $\alpha_{\rm cek} =$ угол наклона секущей М₀М к оси Ox.

Перейдем к пределу при $\Delta x \rightarrow 0$:

$$\lim_{\stackrel{\Delta x \to 0}{(M \to M_0)}} tg \, \alpha_{ce\kappa} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0) = tg \, \alpha_{\kappa ac}$$

То есть $y'(x_0) = tg$ $\alpha_{\text{кас}} = >$ частное значение производной функции y = f(x) в точке x_0 равно угловому коэффициенту касательной, проведенной к линии y = f(x) в точке $M_0(x_0; y(x_0))$.

Тогда, используя уравнение прямой, проходящей через заданную точку $M_0(x_0;y_0)$ с известным угловым коэффициентом $K_{\text{кас}} = y'(x_0)$, можно записать уравнение касательной к линии y = f(x) в точке $M_0(x_0;f(x_0))$:

$$y = f(x_0) + f'(x_0) \cdot (x - x_0)$$

Аналогично, можно записать *уравнение нормали* – прямой, перпендикулярной касательной и проходящей через точку касания $M_0(x_0; f(x_0))$:

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0),$$

используя условие перпендикулярности прямых: $K_{\text{норм}} = -\frac{1}{K\hat{e}\hat{a}\tilde{n}} = -\frac{1}{f'(x_0)}$.

2 Вычисление производной

Правила дифференцирования функций

Пусть $C \in \mathbf{R}$ - постоянная, u = u(x) , v = v(x) - функции, имеющие производные. Тогда

- $1 \quad C' = 0$
- $2 \quad (u \pm v)' = u' \pm v'.$
- $3 \quad (u \cdot v)' = u' \cdot v + u \cdot v'.$
- $4 \quad \left(C \cdot u\right)' = C \cdot u'.$
- $5 \quad \left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}, \quad v \neq 0,$
- $6 \quad \left(\frac{u}{C}\right)' = \frac{u'}{C}.$

Правило дифференцирования сложной функции

Если функция y = f(u) дифференцируема по u, а функция $u = \varphi(x)$ - по x, то сложная функция $y = f(\varphi(x))$ имеет производную

$$y' = f'(u) \cdot u'(x).$$

Таблица производных элементарных функций

$$1 \qquad (u^n)' = n \cdot u^{n-1}u'.$$

$$2 \qquad \left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}.$$

$$3 \qquad \left(u^{-1}\right)' = \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}.$$

$$4 \qquad \left(a^{u}\right)' = a^{u} \cdot \ln a \cdot u'.$$

$$5 \qquad \left(e^{u}\right)' = e^{u} \cdot u'.$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a}.$$

$$7 \qquad \left(\ln u\right)' = \frac{u'}{u}.$$

$$8 \qquad \left(\sin u\right)' = \cos u \cdot u'.$$

$$9 \qquad \left(\cos u\right)' = -\sin u \cdot u'.$$

$$10 \qquad \left(\operatorname{tg} u\right)' = \frac{u'}{\cos^2 u}.$$

$$11 \qquad \left(\operatorname{ctg} u\right)' = -\frac{u'}{\sin^2 u}.$$

$$12 \qquad \left(\arcsin u\right)' = \frac{u'}{\sqrt{1 - u^2}}.$$

13
$$\left(\arccos u\right)' = -\frac{u'}{\sqrt{1-u^2}}$$
.

14
$$\left(\operatorname{arctg} u\right)' = \frac{u'}{1+u^2}$$
.

15
$$\left(\operatorname{arcctg} u\right)' = -\frac{u'}{1+u^2}$$
.

16
$$\left(u^{v}\right)' = v \cdot u^{v-1} \cdot u' + u^{v} \cdot \ln u \cdot v' .$$

Производная степенно - показательной функции $y=u^v$, где u и v дифференцируемые функции и u>0 , определяется формулой

$$(u^{\nu})' = \nu u^{\nu-1} u' + u^{\nu} \ln u \cdot \nu'.$$

Пример 2 Используя правила дифференцирования и таблицу производных, найдем производные следующих функций:

1)
$$y = \sqrt[4]{3x} + 5x^2 + \frac{7}{x^3}$$
,

2)
$$y = \sqrt[5]{(1+3x^2)^3}$$
,

3)
$$y = x^2 \arcsin x$$
,

4)
$$y = \operatorname{Intg}(\frac{\pi}{4} + x)$$
,

5)
$$y = \frac{x^3}{x-3}$$
,

$$6) \ y = e^{\frac{x}{3}} \cdot \cos^2 2x,$$

$$7) \ y = 2^{\sqrt{\sin x}}$$

8)
$$y = (7x)^{\cos x} (x > 0)$$
.

Решение: 1) Перепишем данную функцию, записав слагаемые в виде степени: $y = \sqrt[4]{3} \cdot x^{\frac{1}{4}} + 5x^2 + 7x^{-3}$. Тогда $y' = (\sqrt[4]{3} \cdot x^{\frac{1}{4}})' + (5x^2)' + (7x^{-3})' =$ $= \sqrt[4]{3} \cdot \frac{1}{4}x^{-\frac{3}{4}} + 10x + 7(-3)x^{-4} = \frac{\sqrt[4]{3}}{\sqrt[4]{x}} + 10x - \frac{21}{x^4}.$

- 2) Записываем данную функцию в виде степени: $y = (1+3x^2)^{\frac{3}{5}}$ и вычисляем: $y' = \frac{3}{5}(1+3x^2)^{-\frac{2}{5}} \cdot (1+3x^2)' = \frac{3}{5}(1+3x^2)^{-\frac{2}{5}} 6x = \frac{18}{5\sqrt[5]{(1+3x^2)^2}}$.
 - 3) Применив формулу 4 правил дифференцирования, находим:

$$y' = (x^2)' \cdot \arcsin x + x^2 \cdot (\arcsin x)' = 2x \cdot \arcsin x + \frac{x^2}{\sqrt{1 - x^2}}$$
.

4) Дифференцируя функцию $y = \ln tg(\frac{\pi}{4} + x)$ как сложную находим производную:

$$y' = \frac{(\operatorname{tg}(\frac{\pi}{4} + x))'}{\operatorname{tg}(\frac{\pi}{4} + x)} = \frac{1}{\operatorname{tg}(\frac{\pi}{4} + x)} \cdot \frac{(\frac{\pi}{4} + x)'}{\cos^2(\frac{\pi}{4} + x)} = \frac{1}{\sin(\frac{\pi}{4} + x) \cdot \cos(\frac{\pi}{4} + x)} = \frac{2}{\sin(\frac{\pi}{2} + 2x)} = \frac{2}{\cos 2x}$$

5) В соответствии с формулой 5 правил дифференцирования получаем:

$$y' = \frac{(x^3)'(x-3) - x^3 \cdot (x-3)'}{(x-3)^2} = \frac{3x^2(x-3) - x^3}{(x-3)^2} = \frac{2x^3 - 9x^2}{(x-3)^2}$$

6) По аналогии с примером 3 находим:

$$y' = \left(e^{\frac{x}{3}}\right)' \cdot \cos^2 2x + e^{\frac{x}{3}} \cdot (\cos^2 2x)' = \frac{1}{3}e^{\frac{x}{3}} \cdot \cos^2 2x + e^{\frac{x}{3}} \cdot 2\cos 2x \cdot (-\sin 2x) \cdot 2 =$$

$$= \frac{1}{3}e^{\frac{x}{3}} \cdot \cos^2 2x - 2e^{\frac{x}{3}}\sin 4x$$

7) Так как данная функция - показательная, то, согласно формуле 2 таблицы производных

$$y' = 2^{\sqrt{\sin x}} \cdot \ln 2 \cdot (\sqrt{\sin x})' = 2^{\sqrt{\sin x}} \cdot \ln 2 \cdot \frac{1}{2} (\sin x)^{-\frac{1}{2}} \cdot \cos x =$$

$$= 2^{\sqrt{\sin x}} \cos x \ln 2 \cdot \frac{1}{2\sqrt{\sin x}}.$$

8) производная степенно-показательной функции $y = (7x)^{\cos x} (x > 0)$, равна $y' = \cos x \cdot (7x)^{\cos x - 1} \cdot (7x)' + (7x)^{\cos x} \cdot \ln(7x) \cdot (\cos x)' =$ $= 7\cos x \cdot (7x)^{\cos x - 1} - (7x)^{\cos x} \cdot \ln(7x) \cdot \sin x.$

3 Производные высших порядков

Если функция y = f(x) дифференцируема на некотором промежутке, то она имеет на этом промежутке производную y' = f'(x), которая в свою очередь, тоже может иметь производную, называемую второй производной для функции y = f(x).

Производной второго порядка (второй производной) от функции y = f(x) называется производная от ее первой производной, т. е.

$$f''(x) = (f'(x))'$$
.

Она обозначается:

$$y''(x) = (y')' = \frac{d^2y}{dx^2} = y(x)$$

Может случиться, что новая функция y''(x) имеет производную, она называется *третьей производной* для функции y=f(x).

Производная от производной второго порядка называется *производной темьего порядка*, т.е.

$$f'''(x) = (f''(x))'$$

Ее обозначения:

$$y'''(x) = (y'')' = \frac{d^3y}{dx^3} = y(x)$$

Производная "n"-ого порядка функции y=f(x) обозначается:

$$y^{(n)}(x) = \frac{d^n y}{dx^n} = (y^{(n-1)}(x))'.$$

Пример 3 $y = x^5 - 7x^3 + 2$. Найти третью производную.

Решение:
$$y' = 5x^4 - 21x^2$$
, $y'' = 20x^3 - 42x$, $y''' = 60x^2 - 42$.

4 Дифференциал функции

Дифференциалом dx аргумента x называется его приращение Δx .

Дифференциалом функции f(x) называется произведение производной этой функции на дифференциал ее аргумента:

$$dy = f'(x) dx$$
.

Отсюда следует, что $f'(x) = \frac{dy}{dx}$, то есть производная функции f(x) равна отношению дифференциала функции к дифференциалу аргумента x.

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции в некоторой окрестности точки x_0 (Рисунок 7): из $\Delta M_0 A N$: $AN = M_0 A \cdot tg\alpha = \Delta x \cdot f'(x_0) = dy$

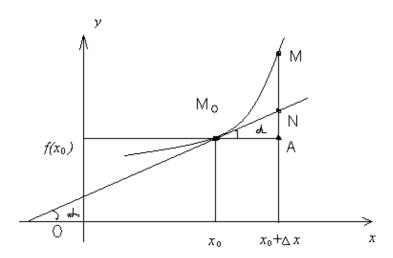


Рисунок 7 – Геометрический смысл дифференциала

Итак: $\partial u \phi \phi$ еренциал функции y = f(x) в точке x_0 равен приращению ординаты касательной (AN), проведенной к кривой y = f(x) в точке $(x_0; f(x_0))$,

при переходе от x_0 к $x_0+\Delta x$ (от точки M_0 в точку M).

Свойства дифференциала:

- 1 dC = 0 (здесь и в следующей формуле $C \square$ постоянная);
- $2 \quad d(Cf(x)) = Cdf(x);$
- 3 Если существуют df(x) и dg(x), то

$$d(f(x) + g(x)) = df(x) + dg(x),$$

$$d(f(x)g(x)) = g(x)df(x) + f(x)dg(x).$$

Если при этом $g(x) \neq 0$, то

$$d\frac{f(x)}{g(x)} = \frac{g(x)df(x) - f(x)dg(x)}{g^2(x)}.$$

Если аргумент функции y=f(x) рассматривать как функцию другого аргумента так, что равенство $\Delta x = dx$ не выполняется, формула дифференциала функции f(x) остается неизменной. Это свойство принято называть свойством инвариантности дифференциала.

Дифференциалом второго порядка функции y = f(x) называется дифференциал от дифференциала первого порядка: $d^2y = d(dy)$.

Аналогично: $d^3y = d(d^2y), ..., d^ny = d(d^{n-1}y).$

Если y = f(x) и x - независимая переменная, то дифференциалы высших порядков вычисляются по формулам

$$d^2y = y''(dx)^2, d^3y = y'''(dx)^3, \dots d^ny = y^{(n)}(dx)^n.$$

Дифференциал функции может применяться для приближенных вычислений:

1 Вычисление приближенного числового значения функции

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
.

2 Приближенное вычисление степеней

$$(x + \Delta x)^n \approx x_0^n + nx_0^{n-1} \Delta x.$$

3 Приближенное извлечение корней

$$\sqrt[n]{x_0 + \Delta x} \approx \sqrt[n]{x_0} + \frac{\sqrt[n]{x_0}}{nx_0} \cdot \Delta x.$$

Пример 4 Найти дифференциалы первого и второго порядков функции y = arctgx.

Решение:

$$dy = (arctgx)'dx = \frac{dx}{1+x^2},$$
$$d^2y = \left(\frac{1}{1+x^2}\right)'(dx)^2 = \frac{-2x}{(1+x^2)^2}(dx)^2.$$

Пример 5 Найти приближенное значение функции

$$f(x) = 2x^3 - 3x + 5$$
 при x=3,001.

Решение: Представим x в виде суммы x=3+0,001. Приняв $x_0=3$ и $\Delta x=0,001$, найдем $f(x_0)=f(3)=2\cdot 3^3-3\cdot 3+5=50$.

Найдем производную и вычислим ее значение в $x_0 = 3$:

$$f'(x) = 6x^2 - 3$$
, $f'(x_0) = f'(3) = 6 \cdot 3^2 - 3 = 51$,
 $f(3,001) = f(3+0,001) \approx 50 + 51 \cdot 0,001 = 50,051$.

Пример 6 Найти приближенное значение степени 5, 013³.

Решение: Представим данную степень в виде $(5 + 0.013)^3$.

Приняв $x_0 = 5$ и $\Delta x = 0.013$ по формуле:

$$(x + \Delta x)^n \approx x_0^n + nx_0^{n-1} \Delta x.$$

Найдем:

$$5.013^3 = (5 + 0.013)^3 \approx 5^3 + 3.5^2 \cdot 0.013 = 125.975$$

Пример 7 Найти приближенное значение корня $\sqrt{0.96}$.

Решение: Представим данный корень в виде $\sqrt{0.96} = \sqrt{1-0.04}$.

Приняв $x_0 = 1$ и $\Delta x = -0.04$ по формуле:

$$\sqrt[n]{x_0 + \Delta x} \approx \sqrt[n]{x_0} + \frac{\sqrt[n]{x_0}}{nx_0} \Delta x$$
.

Найдем:

$$\sqrt{0.94} = \sqrt{1 - 0.04} \approx 1 - \frac{0.004}{2} = 0.98$$
.

Тема 6.2 Применение дифференциального исчисления для исследования функций и построения графиков

- 1 Признаки постоянства и монотонности функции
- 2 Точки экстремума
- 3 Выпуклость, вогнутость и точки перегиба графика функции
- 4 Наибольшее и наименьшее значение функции на отрезке
- 5 Схема исследования функции. Построение графика

1 Признаки постоянства и монотонности функции

Функция y = f(x) называется возрастающей (убывающей) на промежутке (a;b), если для любых x_1 и x_2 , принадлежащих этому промежутку, из условия $x_2 > x_1$ следует неравенство:

$$f(x_2) > f(x_1)$$
 $(f(x_2) < f(x_1))$.

Функция y = f(x) называется *монотонной* на промежутке (a;b), если она на этом промежутке является только возрастающей или только убывающей.

Теорема 2 (достаточные условия монотонности).

Если функция y = f(x) дифференцируема на промежутке (a;b) и f'(x) > 0 (f'(x) < 0) для любых $x \in (a;b)$, то функция возрастает (убывает) на этом промежутке.

2 Точки экстремума

Точка x_0 называется **точкой минимума (максимума)** функции y = f(x), если можно найти такую окрестность этой точки, что для любой точки x из этой окрестности выполняется условие:

$$f(x) > f(x_0)$$
 $(f(x) < f(x_0)).$

Точки максимума и минимума функции называются *точками экстремума*.

Теорема (Необходимое условие экстремума функции)

Если функция y = f(x) имеет экстремум в точке x_0 , то в этой точке производная функции равна нулю или не существует.

Теорема (Достаточное условие экстремума)

Если функция y = f(x) непрерывна в точке x_0 , дифференцируема в некоторой ее окрестности за исключением, может быть, самой этой точки, $f'(x_0) = 0$ или не существует и при переходе через точку x_0 f'(x) изменяет знак, то точка x_0 является точкой экстремума. Если при этом знак f'(x) меняется.

с «+» на «-», то x_0 - точка максимума, с «-» на «+», то x_0 - точка минимума.

3 Выпуклость, вогнутость и точки перегиба графика функции

Если на промежутке (a;b) график функции f(x) расположен выше любой своей касательной, проведенной в точке этого промежутка, то функция называется *вогнутой* на этом промежутке (иногда говорят "выпуклой вниз").

Если на промежутке (a;b) график функции f(x) расположен ниже любой своей касательной, проведенной в точке этого промежутка, то функция называется *выпуклой* на этом промежутке (иногда говорят "выпуклой вверх").

Точка x_0 называется **точкой перегиба** функции y = f(x), если в этой точке функция имеет производную и существуют два промежутка: $(a;x_0)$ и $(x_0;b)$, на одном из которых функция выпукла, а на другом вогнута.

Теорема (Достаточное условие выпуклости или вогнутости кривой).

Пусть функция y = f(x) дважды дифференцируема на промежутке (a;b) и f''(x) для $x \in (a;b)$ сохраняет свой знак.

Если f''(x) > 0 на промежутке (a;b), то на этом промежутке функция f(x) вогнута. Если f''(x) < 0 на промежутке (a;b), то на этом промежутке функция f(x) выпукла.

Теорема (Достаточное условие точки перегиба).

Если функция y = f(x) дифференцируема в окрестности точки x_0 , вторая производная функции f''(x) = 0 или не существует и f''(x) меняет свой знак при переходе x через точку x_0 , то точка $(x_0; f(x_0))$ – точка перегиба графика функции y = f(x).

4 Наибольшее и наименьшее значение функции на отрезке

Пусть функция y = f(x) определена на [a;b].

Число f(c) называется наибольшим (наименьшим) значением функции y = f(x) на [a;b] и обозначается $\max_{[a:b]} f(x)$ ($\min_{[a:b]} f(x)$) если выполняется неравенство:

$$f(x) \le f(c)$$
 $(f(x) \ge f(c))$ для любого $x \in [a;b]$.

Если функция y = f(x) непрерывна на [a;b], то по свойству непрерывной на отрезке функции, она достигает своих наибольшего и наименьшего значений.

Схема нахождения этих значений:

- 1) Найти все точки, в которых f'(x) = 0 или не существует. Причем выбрать те точки из полученных, которые попадают на отрезок [a;b].
 - 2) Вычислить значения функции в точках, полученных в п.1.
- 3) Вычислить значения функции в граничных точках отрезка [a;b] f(a) и f(b).
 - 4) Из чисел п.2 и п.3 найти наибольшее число М и наименьшее т.

$$T_{\text{ОГДа}} M = \max_{[a;b]} f(x), \ m = \min_{[a;b]} f(x)$$

5 Асимптоты

Во многих случаях построение графика функции облегчается, если предварительно построить асимптоты кривой.

Прямая называется *асимптотой графика функции*, если расстояние от переменной точки M графика до этой прямой стремится к нулю при неограниченном удалении точки M от начала координат.

Различают три вида асимптот: *вертикальные, горизонтальные и* наклонные.

Прямая x = a называется **вертикальной асимптотой** кривой y = f(x), если хотя бы один из односторонних пределов

$$\lim_{x \to a-0} f(x)$$
 или $\lim_{x \to a+0} f(x)$ равен $+\infty$ или $-\infty$

Замечание. Если прямая x = a является вертикальной асимптотой кривой y = f(x), то в точке x = a функция f(x) имеет разрыв второго рода.

Наоборот. Если в точке x = a функция f(x) имеет разрыв второго рода, то прямая x = a является вертикальной асимптотой кривой y = f(x).

Прямая y = b называется горизонтальной асимптотой графика функции y=f(x) (правой при $x \to +\infty$, левой при $x \to -\infty$ и двусторонней, если пределы при $x \to \pm \infty$.равны), если

$$\lim_{x\to +\infty} f(x) = b.$$

Прямая y = kx + b называется *наклонной асимптотой* кривой y = f(x) при $x \to +\infty$ (или $x \to -\infty$), если существуют два конечных предела:

$$k = \lim_{\substack{x \to +\infty \\ (u, ux \to -\infty)}} \frac{f(x)}{x} \quad \text{if } b = \lim_{\substack{x \to +\infty \\ (u, ux \to -\infty)}} (f(x) - k \cdot x)$$

Нетрудно видеть, что горизонтальная асимптота y=b является частным случаем наклонной y=kx+b при k=0.

Пример 1 Найти асимптоты кривой $y = \frac{x^3}{x^2 - 1}$

Решение.

- 1) $D(y) = (-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$.
- 2) Точки x = -1 и x = 1 являются точками разрыва второго рода, так как:

$$\lim_{x \to -1+0} \frac{x^3}{x^2 - 1} = \lim_{x \to -1+0} \frac{x^3}{(x - 1)(x + 1)} = \left(\frac{(-1)^3}{(-1 + 0 - 1)(-1 + 0 + 1)}\right) = \left(\frac{-1}{-2 \cdot (+1)}\right) = +\infty$$

$$\lim_{x \to -1 - 0} \frac{x^3}{x^2 - 1} = \lim_{x \to -1 - 0} \frac{x^3}{(x - 1)(x + 1)} = \left(\frac{(-1)^3}{(-1 - 0 - 1)(-1 - 0 + 1)}\right) = \left(\frac{-1}{-2 \cdot (-0)}\right) = -\infty$$

$$\lim_{x \to 1+0} \frac{x^3}{x^2 - 1} = \lim_{x \to 1+0} \frac{x^3}{(x - 1)(x + 1)} = \left(\frac{1^3}{(1 + 0 - 1)(1 + 0 + 1)}\right) = \frac{1}{(+0) \cdot 2} = +\infty$$

$$\lim_{x \to 1-0} \frac{x^3}{x^2 - 1} = \lim_{x \to 1-0} \frac{x^3}{(x - 1)(x + 1)} = \left(\frac{1^3}{(1 - 0 - 1)(1 - 0 + 1)}\right) = \frac{1}{(-0) \cdot 2} = -\infty$$

Поэтому прямые x = -1 и x = 1 являются вертикальными асимптотами.

3) Вычислим предел:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2}{x^2 - 1} = \lim_{x \to +\infty} \frac{2x}{2x} = 1, \ k = 1.$$

$$\lim_{x \to +\infty} (f(x) - k \cdot x) = \lim_{x \to +\infty} \left(\frac{x^3}{x^2 - 1} - x \right) = \lim_{x \to +\infty} \frac{x^3 - x^3 + x}{x^2 - 1} = \lim_{x \to +\infty} \frac{x}{x^2 - 1} = \lim_{x \to +\infty} \frac{x}{x^2 - 1} = \lim_{x \to +\infty} \frac{x}{x^2 - 1} = \lim_{x \to +\infty} \frac{1}{2x} = \frac{1}{\infty} = 0, \ b = 0$$

Отсюда следует, что при $x \to +\infty$ прямая $y = 1 \cdot x + 0$, т.е. y = x - наклонная асимптота при $x \to +\infty$.

Найдем наклонную асимптоту при $x \rightarrow -\infty$.

Вычисляя те же пределы при $x \to -\infty$, получим k = 1 и b = 0, то есть прямая y = x является наклонной асимптотой при $x \to -\infty$.

Ответ: $x=\pm 1$ — вертикальные асимптоты y=x — наклонная асимптота при $x\to\pm\infty$.

6 Схема исследования функции. Построение графика

Схема:

- 1 Найти *область определения* функции D(x), т.е. множество тех значений x, при которых y = f(x) имеет смысл;
- 2 *Исследовать функцию на периодичность*: выяснить, существует ли наименьшее положительное число T, что

$$f(x+T) = f(x)$$
 для любого $x \in D(x)$.

Если «да», то целесообразно далее исследовать функцию и строить ее график только на некотором отрезке длиной периода Т.

Затем продолжить график на всю область определения, разбивая ее на интервалы длины Т, в которых повторяется картинка графика.

- 3 *Исследовать функцию на четность и нечетность*: выяснить, выполняются ли равенства:
 - f(-x) = f(x) для любого $x \in D(x)$ четность, график функции симметричен относительно оси OY
 - f(-x) = -f(x) для любого $x \in D(x)$ нечетность, график функции симметричен относительно начала координат.
- 4 Найти точки пресечения графика функции с осями координат:
 - а) с осью Оу: точка (0;f(0)), если $O \in D(x)$,
 - б) с осью Оу: точка $(x_k;0)$, где $x_k \in D(x)$ и является решением уравнения f(x) = 0.
- 5 **Найти промежутки знакопостоянства**: выяснить, при каких $x \in D(f)$ выполняются неравенства f(x) > 0 (при этом график функции расположен выше оси Ox) и f(x) < 0 (при этом график функции расположен ниже оси Ox).
- 6 Исследовать функцию на непрерывность, установить тип точек разрыва.
- 7 Найти вертикальные и наклонные асимптоты.
- 8 Найти промежутки убывания и возрастания, экстремумы функции
- 9 Найти промежутки выпуклости, вогнутости и точки перегиба графика.
- 10 *Построить график функции*, используя свойства, установленные в проведенном исследовании. Если в некоторых промежутках график остался неясным, то его уточняют по дополнительным точкам.

Пример 1 Исследовать функцию $y = (x+2)e^{-x}$ и построить ее график.

- 1 D(x) = R.
- 2 Функция не периодическая.

- 3 Так как y(-x) # y(x) и y(-x) # -y(x), то функция общего вида, не является ни четной, ни нечетной.
- 4 Точка пересечения графика

$$c Ox : (-2;0), c Oy : (0;2)$$

- 5 При $x \in (-\infty; -2)$ функция отрицательная, при $x \in (-2; +\infty)$ функция положительная.
- 6 Функция непрерывна при $x \in \mathbb{R}$.
- 7 Вертикальных асимптот нет.

Наклонные асимптоты: y = kx + b.

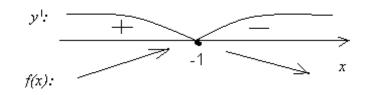
$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x+2)e^{-x}}{x} = \frac{\infty \cdot 0}{\infty} = \lim_{x \to \infty} \frac{x+2}{xe^x} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{1}{e^x + xe^x} = \frac{1}{\infty} = 0$$

$$b = \lim_{x \to \infty} (f(x) + kx) = \lim_{x \to \infty} ((x+2)e^{-x} - 0) = (\infty \cdot 0) = \lim_{x \to \infty} \frac{x+2}{e^{x}} = 0.$$

Следовательно, у = 0 – горизонтальная асимптота

8
$$f'(x) = ((x+2)e^{-x})' = 1 \cdot e^{-x} + (x+2) \cdot (-e^{-x}) = e^{-x}(1-x-2) = -(x+1)e^{-x}.$$

 $y' = 0$: $-(x+1)e^{-x} = 0 \Rightarrow x = -1$, $f(-1) = 1 \cdot e^{1} = e$.



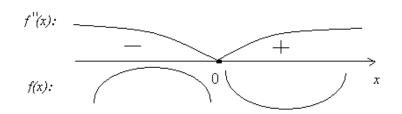
при
$$x \in (-\infty; -1) f(x)$$
 возрастает,

при
$$x \in (-1; +\infty) f(x)$$
 убывает,

при
$$x = -1$$
 $f_{max}(-1) = (-1+2)e^{-(-1)} = e$.

9
$$f'(x) = (-(x+1)e^{-x})' = -1e^{-x} + (x+1)e^{-x} = e^{-x}(x+1-1) = xe^{-x}$$
.

$$f''(x) = 0 : xe^{-x} = 0 \implies x = 0, f(0) = 2.$$



при $x \in (-\infty;0)$ график f(x) выпуклый при $x \in (-(0;+\infty)$ график f(x) вогнутый Точка (0;2) — точка перегиба графика.

10 Сведем результаты проведенного исследования в таблицу 1 и построим график (Рисунок 12)

Таблица 1 – Результаты исследования

X	-∞;-1	-1	-1;0	0	0;+∞
знак $f'(x)$	+	0	-	-	-
знак $f'(x)$	-	-	-	0	+
F(x)		e	\sim	2	<u></u>

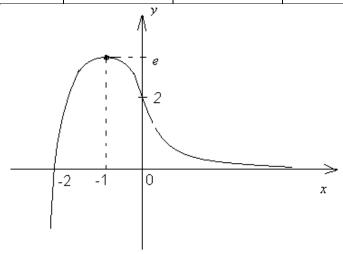


Рисунок $8 - \Gamma$ рафик функции $y = (x+2)e^{-x}$

РАЗДЕЛ 7 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

Тема 7.1 Неопределенный интеграл

План:

- 1 Понятие неопределенного интеграла
- 2 Основные свойства неопределённого интеграла
- 3 Таблица основных интегралов
- 4 Вычисление неопределенного интеграла

1 Понятие неопределенного интеграла

Функцию F(x) называют первообразной (или примитивной) для функции f(x) на промежутке X, если для $\forall x \in X$ F'(x) = f(x) или то же самое, что $dF(x) = f(x) \cdot dx$.

Действие нахождения первообразной называется интегрированием – операция, обратная для дифференцирования.

Если функция имеет первообразную F(x), то она имеет бесконечное множество первообразных F(x) + C, где $C \in R$.

Совокупность всех первообразных для функции f(x) на X называется неопределённым интегралом функции f(x).

Обозначение:
$$\int f(x) \cdot dx = F(x) + C,$$

где F(x) – одна из первообразных для функции на X,

f(x) — подынтегральная функция;

f(x) dx — подынтегральное выражение;

x — переменная интегрирования;

∫ - знак интеграла.

Читается: неопределённый интеграл f(x)dx.

2 Основные свойства неопределённого интеграла:

1° Производная от неопределённого интеграла равна подынтегральной функции.

$$\left(\int f(x) \cdot dx\right)' = f(x).$$

2° Дифференциал от неопределённого интеграла равен подынтегральному выражению.

$$d\int f(x)dx = f(x) \cdot dx.$$

- $3^{\circ} \int F'(x)dx = F(x) + C.$
- 4° Неопределённый интеграл от дифференциала некоторой функции равен сумме этой функции и константы С

$$\int dF(x) = F(x) + C.$$

5° Постоянный множитель можно выносить за знак неопределённого интеграла.

$$\forall c \in R, c \neq 0 \quad \int c \cdot f(x) dx = c \cdot \int f(x) dx.$$

6° Интеграл от суммы равен сумме интегралов, т.е. для \forall f(x) и g(x)

$$\int (f(x) \pm g(x)) dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx.$$

 7° Если F(x) первообразная для f(x) на X, то

$$\int f(kx+b)dx = \frac{1}{k} \cdot F(kx+b) + C.$$

3 Таблица основных интегралов

$\int dx = x + C$	$9 \int \cos(x) dx = \sin(x) + C$
	$10 \int \frac{dx}{\cos^2 x} = tg^x + C$
$3 \int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$	$11 \int \frac{dx}{\sin^2 x} = -ctg(x) + C$

$4 \int \frac{dx}{x} = \ln x + C$	$12 \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C$
$\int \int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$	$13 \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \cdot arctg\left(\frac{x}{a}\right) + C$
$6 \int a^x dx = \frac{a^x}{\ln a} + C, \ a > 0, \ a \neq 1$	$14 \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
$\int e^x dx = e^x + C$	$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left x + \sqrt{x^2 + a}\right + C$
$8 \int \sin(x)dx = -\cos(x) + C$	$16 \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C$

В формулах 1-16 С – произвольная постоянная.

Замечание. Интеграл не от любой элементарной функции является элементарной функцией. Параметрами могут служить следующие интегралы, часто встречающиеся в задачах:

$$\int e^{-x^2} dx - \text{интеграл Пуассона},$$

$$\int \cos x^2 dx, \int \sin x^2 dx - \text{интеграл Френеля},$$

$$\int \frac{dx}{\ln x} (0 < x \neq 1) - \text{интегральный логарифм},$$

$$\int \frac{\cos x}{x} dx, \int \frac{\sin x}{x} dx \quad (x \neq 0) - \text{интегральный косинус и синус}.$$

Указанные функции существуют, имеют важное прикладное значение. Для них составлены таблицы значений.

4 Вычисление неопределенного интеграла

1 Непосредственное интегрирование

Вычисление интеграла путём непосредственного использования таблицы простейших интегралов и их основных свойств.

Пример 1 Вычислить интеграл $\int (3x^4 - 7x^3 + 6x^2 + \frac{4}{x}) dx$.

Pешение: Используя 5^0 , 6^0 свойства и таблицу интегралов, имеем

$$\int \left(3x^4 - 7x^3 + 6x^2 + \frac{4}{x}\right) dx = 3\int x^4 dx - 7\int x^3 dx + 6\int x^2 dx + 4\int \frac{dx}{x} = \frac{3x^5}{5} - \frac{7x^4}{4} + \frac{6x^3}{3} + 4\ln|x| + C = \frac{3x^5}{5} - \frac{7x^4}{4} + 2x^3 + 4\ln|x| + C$$

Пример 2 Вычислить $\int \frac{x^2 + 5x - 1}{\sqrt{x}} dx$.

Решение:

$$\int \frac{x^2 + 5x - 1}{\sqrt{x}} dx = \int \left(\frac{x^2}{\sqrt{x}} + \frac{5x}{\sqrt{x}} - \frac{1}{\sqrt{x}} \right) dx = \int \left(x^{\frac{3}{2}} + 5\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx = \frac{2}{5} x^{\frac{5}{2}} - \frac{10}{3} x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C$$

Пример 3 Вычислить $\int \frac{x^2 dx}{1+x^2}$.

Решение:
$$\int \frac{x^2 dx}{1+x^2} = \int \frac{(x^2+1)-1}{1+x^2} dx = \int \left(1-\frac{1}{1+x^2}\right) dx = \int dx - \int \frac{dx}{1+x^2} = x - arctgx + C$$
.

Пример 4 Вычислить интеграл $\int 2^{x} \cdot 3^{2x} \cdot 5^{3x} dx$

Решение:
$$\int 2^x \cdot 3^{2x} \cdot 5^{3x} dx = \int (2 \cdot 3^2 \cdot 5^3)^x dx = \int 2250^x dx = \frac{2250^x}{\ln 2250} + C$$
.

Пример 5 Вычислить интеграл $\int \sin 5x dx$.

Решение: По 7⁰ свойству

$$\int \sin 5x dx = -\frac{1}{5} \cdot \cos 5x + C.$$

Пример 6 Вычислить интеграл $\int (\sin x + \cos x)^2 dx$.

Решение:

$$\int (\sin x + \cos x)^2 dx = \int (\sin^2 x + 2\sin x \cos x + \cos^2 x) dx = \int (1 + \sin 2x) dx = \int dx + \int \sin 2x dx =$$

$$= x - \frac{1}{2} \cos 2x + C.$$

Пример 7 Вычислить интеграл $\int \frac{dx}{\sqrt{4-x^2}}$.

Решение: По формуле 12 имеем
$$\int \frac{dx}{\sqrt{4-x^2}} = \arcsin \frac{x}{2} + C$$
 (a=2).

Пример 8 Вычислить интеграл $\int \frac{dx}{\sqrt{4+x^2}}$.

Решение: По формуле 15 имеем $\int \frac{dx}{\sqrt{4+x^2}} = \ln|x+\sqrt{4+x^2}| + C$.

2 Метод замены переменной (метод подстановки)

Если функция f(x) непрерывна, а функция $\varphi(t)$ имеет непрерывную производную $\varphi'(t)$, то имеет место формула

$$\int \varphi(t) \cdot \varphi'(t) \cdot dt = \int f(x) dx$$
, где $x = \varphi(t)$.

Пример 9 Вычислить интеграл $\int \frac{\sqrt{x}dx}{1+\sqrt{x}}$.

Peшeнue: Сделаем подстановку $\sqrt{x} = t$ или $x = t^2$. Тогда dx = 2tdt.

Следовательно,

$$\int \frac{\sqrt{x}dx}{1+\sqrt{x}} = \int \frac{t \cdot 2tdt}{1+t} = 2\int \frac{t^2dt}{1+t} = 2\int \frac{(t^2-1)+1}{1+t}dt = 2\int \left(t-1+\frac{1}{1+t}\right)dt = 2\left(\frac{t^2}{2}-1+\ln|1+t|\right) + C = 2\int \left(t-1+\frac{1}{1+t}\right)dt = 2\int$$

Пример 10 Вычислить $\int x^2 (3 + 2x^3)^4 dx$.

Peшeнue: Положим $3 + 2x^3 = t$.

Дифференцируем обе части равенства: $d(3+2x^3)=dt$, $6x^2dx=dt$.

Отсюда $x^2 dx = \frac{dt}{6}$.

Следовательно,

$$\int x^2 (3+2x^3)^4 dx = \int t^4 \cdot \frac{dt}{6} = \frac{1}{6} \int t^4 dt = \frac{1}{6} \cdot \frac{t^5}{5} + C = \frac{(3+2x^3)^5}{30} + C.$$

Пример 11 Найти $\int \frac{3xdx}{\sqrt[3]{(x^2-3)^2}}$.

Решение: Положим $x^2 - 3 = t$.

Дифференцируем обе части равенства: $d(x^2-3)=dt$, 2xdx=dt.

Отсюда $xdx = \frac{dt}{2}$.

Следовательно,

$$\int \frac{3xdx}{\sqrt[3]{\left(x^2-3\right)^2}} = \int \frac{3 \cdot \frac{dt}{2}}{\sqrt[3]{t^2}} = \frac{3}{2} \int \frac{dt}{\sqrt[3]{t^2}} = \frac{3}{2} \int t^{-\frac{2}{3}} dt = \frac{3}{2} \cdot \frac{t^{\frac{1}{3}}}{\frac{1}{3}} + C = \frac{9}{2} \cdot \sqrt[3]{t} + C = \frac{9}{2} \cdot \sqrt[3]{x^2-3} + C.$$

Пример 12 Найти $\int \frac{x^3 dx}{\sqrt{x^8 - 5}}$.

Peшeнue: Положим $x^4 = t$.

Дифференцируем обе части равенства $d(x^4) = dt$, $4x^3 dx = dt$.

Отсюда $x^3 dx = \frac{dt}{4}$.

Следовательно,

$$\int \frac{x^3 dx}{\sqrt{x^8 - 5}} = \int \frac{\frac{dt}{4}}{\sqrt{t^2 - 5}} = \frac{1}{4} \int \frac{dt}{\sqrt{t^2 - 5}} = \frac{1}{4} \ln \left| t + \sqrt{t^2 - 5} \right| + C = \frac{1}{4} \ln \left| x^4 + \sqrt{x^8 - 5} \right| + C.$$

Пример 13 Вычислить $\int \frac{3\cos x dx}{\sqrt{1+2\sin x}}$.

 $Peweeue: Положим 1 + 2 \sin x = t$.

Дифференцируем обе части равенства $d(1+2\sin x)=dt$, $2\cos xdx=dt$.

Отсюда $\cos x dx = \frac{dt}{2}$.

Следовательно,

$$\int \frac{3\cos x dx}{\sqrt{1 + 2\sin x}} = \int \frac{3 \cdot \frac{dt}{2}}{\sqrt{t}} = \frac{3}{2} \int \frac{dt}{\sqrt{t}} = 3 \int \frac{dt}{2\sqrt{t}} = 3\sqrt{t} + C = 3\sqrt{1 + 2\sin x} + C.$$

Пример 14 Вычислить $\int \frac{2\sin x dx}{\sqrt{3+\cos^2 x}}$.

Pewehue: Положим $\cos x = t$.

Дифференцируем обе части равенства $d(\cos x) = dt$, $-\sin x dx = dt$.

Отсюда $\sin x dx = -dt$.

Следовательно,

$$\int \frac{2\sin x dx}{\sqrt{3 + \cos^2 x}} = \int \frac{2 \cdot (-dt)}{\sqrt{3 + t^2}} = -2 \int \frac{dt}{\sqrt{3 + t^2}} = -2 \ln \left| t + \sqrt{3 + t^2} \right| + C = -2 \ln \left| \cos t + \sqrt{3 + \cos^2 x} \right| + C$$

Пример 15 Вычислить $\int \frac{3e^{2x}dx}{\sqrt{e^{4x}+4}}$.

 $Peшeнue: Положим e^{2x} = t$.

Дифференцируем обе части равенства $d(e^{2x}) = dt$, $2e^{2x}dx = dt$.

Отсюда $e^{2x}dx = \frac{dt}{2}$.

Следовательно,

$$\int \frac{3e^{2x}dx}{\sqrt{e^{4x}+4}} = \int \frac{3 \cdot \frac{dt}{2}}{\sqrt{t^2+4}} = \frac{3}{2} \int \frac{dt}{\sqrt{t^2+4}} = \frac{3}{2} \ln \left| t + \sqrt{t^2+4} \right| + C = \frac{3}{2} \ln \left| e^{2x} \sqrt{e^{4x}+4} \right| + C.$$

Пример 16 Вычислить $\int \frac{(2 \ln x + 3)^3}{x} dx$.

Peшeнue: Положим $2 \ln x + 3 = t$.

Дифференцируем обе части равенства $d(2\ln x + 3) = dt$, $\frac{2dx}{x} = dt$.

Отсюда
$$\frac{dx}{x} = \frac{dt}{2}$$
.

Следовательно,

$$\int \frac{(2\ln x + 3)^3}{x} dx = \int t^3 \cdot \frac{dt}{2} = \frac{1}{2} \int t^3 dt = \frac{1}{2} \cdot \frac{t^4}{4} + C = \frac{(2\ln x + 3)^4}{8} + C.$$

3 Метод интегрирования по частям

Пусть u(x) и v(x) — дифференцируемые на некотором промежутке функции. Тогда

$$(u \cdot v)' = u' \cdot v + u \cdot v'.$$

Отсюда следует

$$\int (u \cdot v)' \cdot dx = \int (u' \cdot v + u \cdot v') \cdot dx = \int u' \cdot v \cdot dx + \int u \cdot v' \cdot dx$$

или

$$\int u \cdot v' \cdot dx = u \cdot v - \int u' \cdot v \cdot dx$$

Отсюда следует формула, которая называется формулой интегрирования по частям:

$$\int u \cdot dv = u \cdot v - \int v \cdot du.$$

Практика показывает, что большая часть интегралов, берущихся с помощью метода интегрирования по частям, может быть разбита на следующие три группы.

1) Интегралы вида

$$\int P_n(x)\cos\alpha x dx, \quad \int P_n(x)\cdot\sin\alpha x dx, \quad \int P_n(x)e^{\alpha x} dx, \quad ,$$

где α – некоторое постоянное число,

 $P_n(x)$ - многочлен степени $n, n \in \mathbb{N}$.

При этом
$$u = P_n(x)$$
, $dv = \begin{cases} e^{\alpha x} \\ \sin \alpha x \\ \cos \alpha x \end{cases} \cdot dx$

2) Интегралы вида

$$\int P_n(x) \arcsin \alpha x dx, \int P_n(x) \arccos \alpha x dx \int P_n(x) \ln^n \alpha x dx,$$
$$\int P_n(x) \arctan \alpha x dx, \int P_n(x) \arctan \alpha x dx, \int P_n(x) \arctan \alpha x dx,$$

Тогда за функцию
$$u = \begin{cases} \arcsin \alpha x \\ \arccos \alpha x \\ \ln^n \alpha x \\ \arctan \alpha x \\ \arctan \alpha x \end{cases}$$
 , берут соответствующую из $\frac{1}{1}$

перечисленных, $dv = P_n(x) \cdot dx$

3) Интегралы вида

$$\int e^{dx} \cos \beta x dx \, \int e^{\alpha x} \sin \beta^{x} dx \, \int A^{\alpha x} \cos \beta x dx \,$$

$$\int A^{\alpha x} \sin \beta x dx \, \int \sin(\ln x) dx \, \int \cos(\ln x) dx \,$$

где α , β , A – постоянные числа, A > 0, A # 1.

Такие интегралы берутся двукратным интегрированием по частям при любом выборе u. Это приводит к линейному уравнению относительно предложенного интеграла, откуда его и находят.

Замечание. Указанные три группы не исчерпывают всех без исключения интегралов, берущихся методом интегрирования по частям.

Пример 17 Найти $\int x \sin x dx$.

Решение: Положим u=x, $dv=\sin x dx$.

Тогда du=dx, $v=\int \sin x dx = -\cos x$.

Используя формулу интегрирования по частям, находим

$$\int x \sin x dx = -x \cdot \cos x - \int (-\cos x) dx = -x \cos x + \sin x + C.$$

Пример 18 Найти $\int arctgx dx$.

Pешение: Положим u = arctgx, dv = dx.

Тогда $du = \frac{dx}{1+x^2}$, $v = \int dx = x$.

Используя формулу интегрирования по частям, получаем

$$\int arctgx dx = xarctgx - \int \frac{x dx}{1 + x^2}.$$

Для вычисления интеграла $\int \frac{x dx}{1+x^2}$ применим метод замены переменной.

Положим $1+x^2=t$.

Тогда $d(1+x^2)=dt$, 2xdx=dt, $xdx=\frac{dt}{2}$.

По формуле метода подстановки

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \ln |t| + C = \frac{1}{2} \ln |1+x^2| + C.$$

Итак,

$$\int arctgx dx = xarctgx - \frac{1}{2}\ln\left|1 + x^2\right| + C.$$

Пример 19 Найти $\int \ln x dx$.

Решение: Пусть $u = \ln x$, dv = dx.

Тогда
$$du = \frac{dx}{x}$$
, $v = x$.

По формуле получим

$$\int \ln x dx = x \ln x - \int x \cdot \frac{dx}{x} = s \ln x - \int dx = x \ln x - x + C.$$

Пример 20 Найти $\int (2x-3)e^{3x}dx$.

Решение: Пусть u = 2x - 3, $dv = e^{3x} dx$.

Тогда
$$du = 2dx$$
, $v = \int e^{3x} dx = \frac{1}{3}e^{3x}$.

По формуле имеем

$$\int (2x-3)e^{3x}dx = \frac{1}{3}e^{3x}(2x-3) - \frac{2}{3}\int e^{3x}dx = \frac{1}{3}e^{3x}(2x-3) - \frac{2}{9}e^{3x} + C.$$

Пример 21 Найти $\int (3x^2 + 2x - 5) \ln(x) dx$.

Решение: Положим $u = \ln x$, $dv = (3x^2 + 2x - 5)dx$.

Тогда
$$du = \frac{dx}{x}, \quad v = x^3 + x^2 - 5x.$$

По формуле получаем

$$\int (3x^2 + 2x - 5)\ln(x)dx = (x^3 + x^2 - 5x)\ln x - \int \frac{x^3 + x^2 - 5x}{x}dx = (x^3 + x^2 - 5x)\ln x - \int (x^2 + x - 5)dx = (x^3 + x^2 - 5x)\ln x - \frac{x^3}{3} - \frac{x^2}{2} + 5x + C$$

Пример 22 Найти $\int x^2 e^x dx$.

Pешение: Положим $u = x^2$, $dv = e^x dx$.

Тогда
$$du = 2xdx$$
, $v = e^x$.

Согласно формуле интегрирования по частям, имеем:

$$\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx.$$

Для вычисления интеграла $\int xe^x dx$ снова применим формулу интегрирования по частям.

Положим u = x, $dv = e^x dx$.

Tогда du = dx, $v = e^x$.

Окончательно получим

$$\int x^2 e^x dx = x^2 e^x - 2(xe^x - \int e^x dx) = x^2 e^x - 2xe^x + 2e^x + C = e^x(x^2 - 2x + 2) + C.$$

Пример 23 Найти $\int e^x \sin x dx$.

Решение: Положим $u = e^x$, $dv = \sin x dx$.

Тогда
$$du = e^x dx$$
, $v = -\cos x$.

Применяя формулу метода интегрирования по частям, получаем:

$$\int e^x \sin x dx = -e^x \cos x + \int e^x \cos x dx.$$

Полученный интеграл снова вычисляем методом интегрирования по частям.

Положим $u = e^x$, $dv = \cos x dx$.

Тогда $du = e^x dx$, $v = \sin x$.

По формуле имеем:

$$\int e^x \cos x dx = e^x \sin x - \int e^x \sin x dx.$$

Таким образом,

$$\int e^x \sin x dx = -e^x \cos x + e^x \sin x - \int e^x \sin x dx,$$

мы пришли к исходному интегралу.

Перенося интеграл из правой части этого равенства в левую, получим:

$$2\int e^x \sin x dx = e^x (\sin x - \cos x);$$
$$\int e^x \sin x dx = \frac{e^x}{2} (\sin x - \cos x) + C.$$

Тема 7.2 Определенный интеграл

План:

- 1 Задача, приводящая к определенному интегралу
- 2 Свойства определенного интеграла
- 3 Вычисление определенного интеграла
- 4 Геометрические приложения определенного интеграла

1 Задача, приводящая к определенному интегралу

Пусть функция f(x) определена на интервале [a,b].

Криволинейной трапецией называется фигура, ограниченная осью абсцисс, прямыми x = a, x = b и графиком функции y = f(x).

Ставится задача: вычислить площадь этой криволинейной трапеции (рисунок 9)

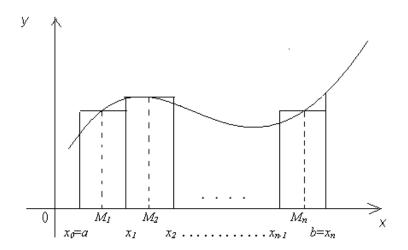


Рисунок 9 – Криволинейная трапеция

Разобьем отрезок [a,b] с помощью точек $x_0=a < x_1 < ... < x_n=b$ на более мелкие отрезки $[x_i \ , x_{i+1}]$. Внутри каждого из последних отрезков выберем точку ${\mathcal C}_i$. Построим на каждом из отрезков прямоугольники с высотами, равными значению функции в выбранных точках ${\mathcal C}_i$.

Площади полученных прямоугольников равны: $S_1 = f(c_1) \cdot \Delta x_1$; $S_2 = f(c_2) \cdot \Delta x_2$;; $S_n = f(c_i) \cdot \Delta x_i$.

Найдем сумму этих площадей:

$$\bar{S} = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \dots + f(c_n)\Delta x_n = \sum_{i=1}^n f(c_i)\Delta x_i$$

Получили площадь ступенчатой фигуры. Эта площадь зависит от способа разбиения отрезка [a;b] на части и от выбора на каждой из частей точек ${}^{\mathcal{C}}{}_i$ $(i=1,\ldots,n).$

Чем больше будет точек разбиения [a;b] на части и мельче по длине эти части, тем точнее сумма $\overset{-}{S}=\sum_{i=1}^n f(c_i)\Delta x_i$ будет приближаться к площади данной криволинейной трапеции. То есть можно записать:

$$S_{\kappa pus.mp.} = \lim_{\substack{\max \Delta x_i \to 0 \\ n \to \infty}} \bar{S} = \lim_{\substack{\max \Delta x_i \to 0 \\ n \to \infty}} \sum (c_i) \Delta x_i$$

 $C_{\text{УММ}}$ $\bar{S} = \sum_{i=1}^{n} f(c_i) \Delta x_i$ называется интегральной суммой функции f(x) на отрезке [a;b].

Предел интегральной суммы S функции f(x) на [a;b] при $n \to \infty$ и $\max \Delta x_i$ $\to 0$ называется определенным интегралом функции f(x) на отрезке [a;b], если этот предел существует и не зависит ни от способа разбиения [a;b] на части, ни от выбора точек c_i (i=1,...,n) на каждой из частей. Следовательно, можно записать:

$$S_{\kappa pus.mpaneuuu} = \lim_{n \to \infty} \sum f(c_u) \Delta x_r = \int_a^b f(x) dx$$

При этом отрезок [a;b] называют отрезком интегрирования, "a" – нижним пределом интегрирования, "b" – верхним пределом.

Теорема (Достаточное условие интегрируемости функции на [a;b])

Если функция f(x) на [a;b] непрерывна, то определенный интеграл $\int_a^b f(x) dx$ существует, то есть функция f(x) на [a;b] интегрируема.

2 Свойства определенного интеграла

 1^{0} Постоянный множитель можно выносить за знак определенного интеграла:

$$\int_{a}^{b} Cf(x)dx = C\int_{a}^{b} f(x)dx.$$

2⁰ Определенный интеграл от суммы функций равен сумме интегралов от слагаемых:

$$\int_{a}^{b} [f_1(x) + f_2(x)] dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx.$$

 3^0 Если на отрезке [a,b] функции f(x) и g(x) удовлетворяют условию $f(x) \leq g(x)$, то

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

 4^0 *Теорема о среднем.* Если функция f(x) непрерывна на [a,b], то существует точка $c \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

 5^0 Для любых трех чисел a, b, c имеет место равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

если только все эти интегралы существуют.

$$6^0 \qquad \int_a^b f(x)dx = -\int_b^a f(x)dx.$$

3 Вычисление определенного интеграла

1 Формула Ньютона-Лейбница

Если F(x) - произвольная первообразная для непрерывной на [a,b] функции f(x), то имеет место равенство

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

Пример 1 Вычислить $\int_{-1}^{2} (x^2 - 3x + 7) dx$ по формуле Ньютона-Лейбница.

Решение:

$$\int_{-1}^{2} \left(x^{2} - 3x + 7\right) dx = \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 7x\right)_{-1}^{2} = \left(\frac{2^{3}}{3} - \frac{3 \cdot 2^{2}}{2} + 7 \cdot 2\right) - \left(\frac{(-1)^{3}}{3} - \frac{3 \cdot (-1)^{2}}{2} + 7 \cdot (-1)\right) = \frac{8}{3} - 6 + 14 + \frac{1}{3} + \frac{3}{2} + 7 = 19,5$$

Пример 2 Вычислить $\int_{0}^{\frac{\pi}{2}} \sin x dx$ по формуле Ньютона-Лейбница.

Решение:
$$\int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos \left| \frac{\pi}{2} \right| = -(\cos \frac{\pi}{2} - \cos 0) = -(0 - 1) = 1$$

2 Замена переменных в определенном интеграле.

Пусть $f(\varphi(x))$ - некоторая функция, определенная на отрезке [a,b]. Введем новую переменную t по формуле $\varphi(x)=t$. Пусть $\varphi(a)=\alpha, \ \varphi(b)=\beta,$ функции $\varphi(x), \varphi'(x), \ f(\varphi(x))$ непрерывны на отрезке $[\alpha,\beta]$. Тогда

$$\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) dx = \int_{\alpha}^{\beta} f(t) dt.$$

Пример 3 Вычислить $\int_{2\sqrt{2}}^{4} 3x \sqrt{x^2 - 7} dx$.

Решение: Положим $x^2 - 7 = t$. Тогда $d(x^2 - 7) = dt$, 2xdx = dt, $xdx = \frac{1}{2}dt$;

Если $x = 2\sqrt{2}$, то t=1; если x=4, то t=9.

Следовательно,

$$\int_{2\sqrt{2}}^{4} 3x \sqrt{x^2 - 7} dx = \int_{1}^{9} 3\sqrt{t} \cdot \frac{dt}{2} = \frac{3}{2} \int_{1}^{9} \sqrt{t} dt = \frac{3}{2} \int_{1}^{9} t^{\frac{1}{2}} dt = \frac{3}{2} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{1}^{9} = t^{\frac{3}{2}} \Big|_{1}^{9} = t \cdot \sqrt{t} \Big|_{1}^{9} = 9\sqrt{9} - 1\sqrt{1} = 26$$

3 Интегрирование по частям.

Для любых непрерывно дифференцируемых на отрезке [a,b] функций f(x) и g(x) имеет место равенство

$$\int_{a}^{b} f(x)g'(x)dx = (f(x)g(x))\Big|_{a}^{b} - \int_{a}^{b} g(x)f'(x)dx.$$

или, в обозначениях
$$\begin{vmatrix} u = f(x) & dv = g'(x)dx \\ du = f'(x)dx & v = g(x) \end{vmatrix}$$
, $\int_a^b u dv = uv \Big|_a^b - \int_a^b v du$.

Пример 4 Вычислить $\int_{0}^{1} xe^{-x} dx$.

Решение: Воспользуемся методом интегрирования по частям.

Положим u = x, $dv = e^{-x} dx$.

Tогда
$$du = dx, \quad v = \int e^{-x} dx = -e^{-x}.$$

Следовательно,
$$\int\limits_0^1 x e^{-x} dx = -x \cdot e^{-x} \Big|_0^1 + \int\limits_0^1 e^{-x} dx = -e^{-1} - e^{-x} \Big|_0^1 = -2e^{-1} + 1 = \frac{e-2}{e} \,.$$

4 Геометрические приложения определенного интеграла

1 Вычисление площадей плоских фигур в прямоугольной системе координат

а) Область D ограничена кривыми y = f(x) и y = g(x), прямыми x=a и x=b, причем $f(x) \ge g(x)$ для $x \in [a;b]$.

$$S_D = \int_a^b (f(x) - g(x)) dx.$$

б) Область D ограничена кривыми x = f(y) и x = g(y), прямыми y = c и y = d, причем $f(y) \ge g(y)$ для $y \in [c;d]$.

$$S_D = \int_{c}^{d} (f(y) - g(y)) dy.$$

2 Вычисление объема тела вращения

а) Пусть надо вычислить объем тела, образованного вращением *вокруг* оси Ox криволинейной трапеции ABCD, ограниченной кривой y = f(x), осью Ox и прямыми x=a, x=b.

В таком случае площадь поперечного сечения в т. $x \in [a;b]$ круг радиусом f(x) равна:

$$S(x) = \pi \cdot f^2(x).$$

Тогда объем тела, образованного вращением *вокруг оси Ох* этой криволинейной трапеции, вычисляется по формуле:

$$V = \pi \int_{a}^{b} f^{2}(x) dx.$$

б) Объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной кривой $x = \varphi(y)$, осью Oy и прямыми y = c, y = d, вычисляется по формуле:

$$V = \pi \int_{c}^{d} \varphi^{2}(y) dy.$$

Тема 7.3 Несобственные интегралы

План

- 1 Несобственные интегралы по бесконечному промежутку
- 2 Несобственные интегралы от неограниченных функций

Изучая определенный интеграл от функции f(x), мы требовали, чтобы f(x) удовлетворяла следующим условиям:

- 1) была определена на *конечном* отрезке [a;b];
- 2) была непрерывна на отрезке [a;b].

Если нарушено одно из указанных условий, то речь будет идти о *несобственных интегралах* первого и второго рода.

1 Несобственные интегралы по бесконечному промежутку

Пусть функция f(x) определена и непрерывна на промежутке $[a;+\infty)$ или $(-\infty;a]$ или $(-\infty;+\infty)$.

Если существует конечный предел $\lim_{b\to\infty}\int_a^b f(x)dx$, то этот предел называется несобственным интегралом первого рода или несобственным интегралом от f(x) на бесконечном промежутке $[a;+\infty)$, обозначается $\int_a^{+\infty} f(x)dx$ и в этом случае говорят, что интеграл сходится.

Если $\lim_{b\to +\infty}\int_a^b f(x)dx$ не существует или равен ∞ , то говорят, что интеграл $\int_a^{+\infty} f(x)dx$ расходятся.

Аналогично определяются интегралы:

$$\int_{-\infty}^{a} f(x)dx = \lim_{b \to -\infty} \int_{b}^{a} f(x)dx$$

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx = \lim_{b \to \infty} \int_{b}^{a} f(x)dx + \lim_{c \to \infty} \int_{a}^{c} f(x)dx$$

Если пределы конечные, то соответствующий интеграл считают *сходящимся*, а если хотя бы один из пределов не существует или бесконечный, то интеграл считают *расходящимся*.

Пример 1 Исследовать на сходимость несобственный интеграл:

$$\int_{1}^{+\infty} xe^{-2x} dx = \lim_{b \to +\infty} \int_{1}^{b} xe^{-2x} dx = \begin{bmatrix} u = x \\ dV = e^{-2x} dx \end{bmatrix} du = dx \\ V = -\frac{1}{2}e^{-2x} \end{bmatrix} = \lim_{b \to +\infty} \left(-\frac{x}{2}e^{-2x} \right) \left| \frac{du = dx}{dV = e^{-2x} dx} \right| = \lim_{b \to +\infty} \left(-\frac{x}{2}e^{-2x} \right) \left| \frac{du = dx}{dV = e^{-2x} dx} \right| = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) \right| = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{b}{2e^{+2b}} + \frac{e^{-2}}{2} - \frac{1}{4}e^{-2x} \right) = \lim_{b \to +\infty} \left(-\frac{e^{-2}}{2e^{+2b}} + \frac{e^{-2}}{2e^{+2b}} + \frac{e^{-2}}{2e^$$

$$= \lim_{b \to +\infty} \left(-\frac{b}{2e^{2b}} + \frac{1}{2}e^{-2} - \frac{1}{4}e^{-2b} + \frac{1}{4}e^{-2} \right) = -\lim_{b \to +\infty} \frac{b}{2e^{2b}} - \lim_{b \to +\infty} \frac{1}{e^{2b}} + \frac{3}{4e^{2}} =$$

$$= -\lim_{b \to +\infty} \frac{1}{4e^{2b}} - 0 + \frac{3}{4e^{2}} = \frac{3}{4e^{2}}$$

Так как получили конечное число, то интеграл $\int_{1}^{+\infty} xe^{-2x} dx$ сходится и равен $\frac{3}{4e^2}$.

2 Несобственные интегралы от неограниченных функций

1) Пусть функция y = f(x) определена и непрерывна на промежутке [a;b], а в точке x=b либо не определена, либо имеет разрыв. Такую точку x=b будем называть *особой точкой* функции f(x).

Если существует конечный предел $\lim_{\varepsilon \to 0} \int_a^{b-\varepsilon} f(x) dx$, то он называется **несобственным интегралом второго рода** от функции f (x) на отрезке [a;b] и обозначается символом $\int_a^b f(x) dx$.

При этом говорят, что несобственный интеграл $\int_a^b f(x)dx$ *сходится* и пишут равенство:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx.$$

Если конечный предел не существует или он бесконечный, то говорят, что несобственный интеграл $\int_a^b f(x) dx$ расходится.

2) Пусть функция y = f(x) определена и непрерывна на промежутке [a;b], а в точке x=a либо не определена, либо имеет разрыв. Такую точку x=a называют особой точкой функции f(x).

Если существует конечный предел $\lim_{\varepsilon \to 0} \left(\int_{a+\varepsilon}^b f(x) dx \right)$, то он называется **несобственным интегралом второго рода** от функции f(x) на отрезке [a;b] и обозначается символом:

$$\int_{a}^{b} f(x)dx.$$

При этом говорят, что несобственный интеграл $\int_{a}^{b} f(x)dx$ *сходится* и пишут равенство:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \left(\int_{a+\varepsilon}^{b} f(x)dx \right).$$

Если конечный предел не существует или бесконечен, то говорят, что несобственный интеграл $\int_a^b f(x) dx$ расходится.

Замечание. Если функция f(x) имеет разрыв в некоторой точке x=c внутри отрезка [a;b], то по определению полагают:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x)dx \right) + \lim_{\delta \to 0} \left(\int_{c+\delta}^{b} f(x)dx \right)$$

при условии, что *оба* предела в правой части существуют, и ε и δ не зависят друг от друга. Этот интеграл также называют *несобственным интегралом второго рода* от функции f(x) на отрезке [a;b] и обозначается символом:

$$\int_{a}^{b} f(x)dx.$$

Сходимость или **расходимость** такого интеграла зависит от существования или не существования конечного предела.

Пример 2 Исследовать на сходимость

$$\int_{0}^{1} \ln x dx = \lim_{\varepsilon \to 0} \left(\int_{\varepsilon}^{1} \ln x dx \right) = \left[u = \ln x \middle| du = \frac{1}{x} dx \middle|_{V = x} \right] = \lim_{\varepsilon \to 0} \left(x \ln x \middle|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} dx \middle|_{\varepsilon}^{1} \right) = \lim_{\varepsilon \to 0} \left(\frac{\ln x}{\frac{1}{x}} \middle|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} dx \middle|_{\varepsilon}^{1} \right) = \lim_{\varepsilon \to 0} \left(\frac{\ln x}{\frac{1}{x}} \middle|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} dx \middle|_{\varepsilon}^{1} - \int_$$

Так получили конечное число, то $\int_{0}^{1} \ln x dx$ сходится и равен «-1».

Пример 3 Исследовать на сходимость:

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{\varepsilon \to 0} \left(\int_{0}^{1-\varepsilon} \frac{dx}{\sqrt{1-x^{2}}} \right) = \lim_{\varepsilon \to 0} \left(\arcsin x \middle|_{0}^{1-\varepsilon} \right) = \lim_{\varepsilon \to 0} \left(\arcsin(1-\varepsilon) - \arcsin 0 \right) = \lim_{\varepsilon \to 0} \left(\arcsin(1-\varepsilon) \right) = \arcsin 1 = \frac{\pi}{2}$$

Так как получили конечное число, то $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$ сходится и равен $\frac{\pi}{2}$.

Пример 4 Исследовать на сходимость:

$$\int_{-1}^{1} \frac{dx}{x^{2}} = \int_{-1}^{0} \frac{dx}{x^{2}} + \int_{0}^{1} \frac{dx}{x^{2}} = \lim_{\varepsilon \to 0} \left(\int_{-1}^{-\varepsilon} \frac{dx}{x^{2}} \right) + \lim_{\delta \to 0} \left(\int_{\delta}^{1} \frac{dx}{x^{2}} \right) = \lim_{\varepsilon \to 0} \left(-\frac{1}{x} \Big|_{-1}^{-\varepsilon} \right) + \lim_{\delta \to 0} \left(\left(-\frac{1}{x} \right) \Big|_{\delta}^{1} \right) = \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} - 1 \right) + \lim_{\delta \to 0} \left(-1 + \frac{1}{\delta} \right) = \infty + \infty = \infty$$

Так получили бесконечность, то $\int_{-1}^{1} \frac{dx}{x^2}$ расходится.