Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт сельского хозяйства и природных ресурсов

Кафедра фундаментальной и прикладной химии

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Учебный модуль по направлению подготовки бакалавров 44.03.05 — ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ (с двумя профилями подготовки) Профили - БИОЛОГИЯ И ХИМИЯ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Разработали заведующий кафедрой ФПХ _______ И.В. Зыкова

ст. преподаватель кафедры ФПХ

thank BA Maron

25 мая 2017 г.

Принято на заседании Ученого совета ИСХПР

Протокол № <u>5</u> от <u>31. 05</u> 2017 г.

Зам. директора ИСХПР

В. Литвинов

Принято на заседании кафедры ФПХ

Протокол № *9* от *26.05* 2017 г.

Заведующий кафедрой ФПХ

фоткор И.В. Зыкова

Паспорт фонда оценочных средств

по учебному модулю «Неорганическая химия»

для направления подготовки 44.03.05 – ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ (с двумя профилями подготовки) Профили - БИОЛОГИЯ И ХИМИЯ

No	Модуль, раздел	Контроли-	ФОС	
Π/Π	(в соответствии с РП)	руемые	Вид оценочного средства	Коли-
		компетенции (или их		чество
		(или их части)		вариантов заданий
		/	«Общая химия»	эадании
1	1.1 Основные понятия	CKX-1,	Лабораторная работа (ЛР 1)	1
	химии	CKX-3	Контрольная работа (КР 1)	10
2	1.2 Строение	CKX-1,	Лабораторная работа (ЛР 2, ЛР 3)	1
	вещества	CKX-3		
3	1.3 Учение о	CKX-1,	Лабораторная работа (ЛР 4, ЛР 5)	1
	химических процессах	CKX-3		
4	1.4 Химические	CKX-1,	Лабораторная работа	1
	процессы	CKX-3	$(\Pi P 6, \Pi P 7, \Pi P 8, \Pi P 9, \Pi P 10)$	
	в растворах		Контрольная работа (КР 2, КР 3)	10
			Тест	10
5	Аттестация:	CKX-1,	Комплект экзаменационных билетов	30
	экзамен	CKX-3		
	УЭМ 2 «Неоргал	ническая хи.	мия s-, p- и некоторых d-элементов»	
6	2.1 Свойства р-	CKX-1,	Лабораторная работа	1
	элементов V-VII групп	CKX-3	$(\Pi P 1, \Pi P 2, \Pi P 3, \Pi P 4)$	
	и их соединений		Контрольная работа (КР 1)	10
7	2.2 Свойства s- и p-	CKX-1,	Лабораторная работа	1
	элементов I-IV групп и	CKX-3	(ЛР 5, ЛР 6, ЛР 7)	
	их соединений		Контрольная работа (КР 2)	10
	2.3 Свойства	CKX-1,	Лабораторная работа	1
	некоторых d-	CKX-3	(ЛР 8, ЛР 9, ЛР 10)	
	элементов и их		Задание для индивидуальной работы	10
	соединений			
	Аттестация:	CKX-1,	, Суммарные результаты текущего контролг	
	зачет	CKX-3		

Характеристика оценочного средства ЗАДАНИЯ К ЛАБОРАТОРНОМУ ПРАКТИКУМУ

Задания к лабораторному практикуму — задания для самостоятельного выполнения в ходе лабораторных работ, предполагающие применение теоретических знаний в реальном лабораторном химическом эксперименте и направленные на формирование не только знаний способов действий, но практических умений, прежде всего, экспериментальных умений и навыков. Эти задания являются и средством обучения, и средством контроля, поскольку учебная деятельность при их использовании включает следующие этапы: *цель* \rightarrow *ориентировочный этап* \rightarrow *исполнительский этап* \rightarrow *корректировочный этап*.

Комплект заданий к лабораторному практикуму

Разделы	Темы заданий к лабораторному практикуму	Контролируемые
УЭМ		компетенции
		(их части)
	УЭМ 1 Общая химия	
Раздел 1	ЛР 1 Получение солей	CKX-1, CKX-3
Раздел 2	ЛР 2 Концентрация растворов	CKX-1, CKX-3
	ЛР 3 Электролитическая диссоциация. Гетерогенные процессы	CKX-1, CKX-3
Раздел 3	ЛР 4 Водородный показатель	CKX-1, CKX-3
	ЛР 5 Определение жесткости питьевой воды	CKX-1, CKX-3
Раздел 4	ЛР 6 Кинетика химических реакций	CKX-1, CKX-3
	ЛР 7 Окислительно-восстановительные реакции	CKX-1, CKX-3
	ЛР 8 Гальванический элемент. Коррозия металлов	CKX-1, CKX-3
	ЛР 9 Электролиз водных растворов электролитов	CKX-1, CKX-3
	ЛР 10 Комплексные соединения	CKX-1, CKX-3
	УЭМ 2.Неорганическая химия s-, p- и некоторых d- элементо	06
Раздел 1	ЛР 1 Галогены	CKX-1, CKX-3
	ЛР 2 Определение концентрации кислорода, растворенного в	CKX-1, CKX-3
	воде	
	ЛР 3 Химические свойства и аналитическая характеристика	CKX-1, CKX-3
	соединений серы	
	ЛР 4 Азот и его соединения	CKX-1, CKX-3
Раздел 2	ЛР 5 Углерод, кремний	CKX-1, CKX-3
	ЛР 6 Бор, алюминий. Олово, свинец	CKX-1, CKX-3
	ЛР 7 Химические свойства металлов	CKX-1, CKX-3
Раздел 3	ЛР 8 Марганец	CKX-1, CKX-3
	ЛР 9 Железо	CKX-1, CKX-3
	ЛР 10 Медь, серебро	CKX-1, CKX-3

Параметры оценочного средства ЗАДАНИЯ К ЛАБОРАТОРНОМУ ПРАКТИКУМУ

Предел длительности контроля	3 акад. час (УЭМ 1), 2 акад.час (УЭМ 2)
Предлагаемое количество заданий из одного контролируемого раздела	В соответствии с пособиями: 1 Получение солей: Метод. указания к лабораторной работе / Сост. В.П. Кузьмичева, И.В. Летенкова. — НовГУ им. Ярослава Мудрого, Великий Новгород, 2013 г. — 16с 2 Концентрация растворов. Приготовление растворов заданной концентрации. Методические указания к лабораторной работе /
Последовательность выборки заданий из каждого раздела	Составители: Олисова Г. Н., Ульянова Н.И. — Великий Новгород, НовГУ им. Ярослава Мудрого, 2013 г. — 24 стр. 3 Электролитическая диссоциация: Методические указания к лабораторной работе / Составители: И.В. Летенкова, Е.Н. Бойко. — Великий Новгород, НовГУ им. Ярослава Мудрого, 2012 г. — 15 с. 4 Водородный показатель: Методические указания к лабораторной работе / Составители: Е.Н. Бойко; Г.Н. Олисова; Н.И. Ульянова — Великий Новгород, НовГУ им. Ярослава Мудрого, 2012 г. — 16 с. 5 Определение жесткости воды (титриметрический метод анализа): Методические указания к лабораторной работе / Составители: Н.И. Ульянова, Г.Н. Олисова. —Великий Новгород, НовГУ им. Ярослава Мудрого, 2013 г.— 19 с. 6 Кинетика химических реакций: Метод указания к лабораторной работе / Составители: И.В. Летенкова, Е.Н. Бойко. — Великий Новгород, НовГУ им. Ярослава Мудрого, 2012 г.— 18с. 7 Окислительно-восстановительные реакции: Методические указания к лабораторной работе / Составители: Е.Н.Бойко, Н.И. Ульянова, Г.Н. Олисова. — НовГУ, Великий Новгород, 2012 г.— 19 с. 8 Гальванический элемент. Электрохимическая коррозия металлов: Методические указания к лабораторной работе / Составители: Бойко Е.Н., Петухова Е.А. — НовГУ, Великий Новгород, 2013 г.— 16 с. 9 Электролиз водных растворов электролитов: Методические указания к лабораторной работе / Составители: Бойко Е.Н., Петухова Е.А. — НовГУ, Великий Новгород, 2013 г.— 18 с. 10 Комплексные соединения: Методические указания к лабораторной работе / Составители: В.П. Кузьмичева, Г.Н. Олисова, Н.И. Ульянова. — Великий Новгород, НовГУ им. Ярослава Мудрого, 2013 г.— 18 с. 11 ХИМИЯ ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ. Методические указания к лабораторным работам по неорганической химии для студентов специальности 040501.65 — Фундаментальная и прикладная химия / Составители: В.П. Кузьмичева, Е.А. Пчёлина, В.А. Исаков, НовГУ им. Ярослава Мудрого. — Великий Новгород, 2014 г.— 203 с. 12 Химические свойства металлов. Методические указания к лабораторной работе / Составители: В.П. Кузьмичёва, В.А. Исаков. —
	НовГУ, Великий Новгород, 2013 г. – 15 с.
Критерии оценки:	2
«5», если	Задания выполнены правильно и полностью, вдумчиво и внимательно, лабораторный эксперимент выполнен безукоризненно, в отчете о лабораторной работе четко установлены связи теоретических и практических аспектов рассматриваемого вопроса, защита лабораторной работы показала его полное понимание
«4», если	Задания выполнены с несущественными ошибками, практически полностью, лабораторный эксперимент выполнен с небольшими погрешностями, в отчете о лабораторной работе слабо прослеживаются связи теоретических и практических аспектов рассматриваемого вопроса, защита лабораторной работы показала его частичное понимание
«3», если	Задания выполнены с существенными ошибками, не в полном объеме, лабораторный эксперимент выполнен с погрешностями, в отчете о лабораторной работе практически не прослеживаются связи теоретических и практических аспектов рассматриваемого вопроса, защита лабораторной работы показала его частичное понимание

Характеристика оценочного средства КОНТРОЛЬНАЯ РАБОТА

Контрольная работа – средство проверки умений применять полученные знания для решения расчетных и логических задач по разделам модуля.

Комплект контрольных работ

Разделы	Темы контрольных работ	Контролируемые			
УЭМ		компетенции			
		(их части)			
	УЭМ 1 Общая химия				
Раздел 1	КР 1 Основные понятия химии, номенклатура и свойства	Химические			
	веществ	процессы в			
		растворах			
Раздел 2	-	-			
Раздел 3	-	-			
Раздел 4	КР 2 Растворы. Обменные реакции в растворах. Общие	CKX-1, CKX-3			
	свойства растворов				
	КР 3 Основные закономерности протекания химических	CKX-1, CKX-3			
	реакций				
УЭМ 2.Неорганическая химия s-, p- и некоторых d- элементов					
Раздел 1	КР 1 Неметаллы	CKX-1, CKX-3			
Раздел 2	КР 2 s- и p-Металлы	CKX-1, CKX-3			

Каждая контрольная работа содержит 10 вариантов контрольных заданий, каждый вариант контрольной работы содержит 3-5 контрольных заданий (задач). Комплекты заданий для всех контрольных работ представлены в закрытой части ФОС. Демонстрационный вариант заданий для каждой контрольной работы приведен ниже.

Параметры оценочного средства

Предел длительности контроля	3 акад. час (УЭМ 1), 1 акад. час (УЭМ 2)
Предлагаемое количество заданий	3-12
Последовательность выборки	Случайная
вариантов заданий	
Критерии оценки:	
«5», если	Студент осуществляет правильное, полное и
	обоснованное решение задач, проявляя отличные
	теоретические знания и практические умения, или
	степень правильности решения задач достигает 90-
	100%.
«4», если	Студент допускает неточности при решении задач,
	проявляя хорошие теоретические знания и
	практические умения, при этом степень правильности
	решения задач достигает 70-89%.
«3», если	Студент допускает существенные погрешности при
	решении задач, проявляя удовлетворительные знания и
	практические умения, при этом степень правильности
	решения задач достигает 50-69%.

Кафедра фундаментальной и прикладной химии

Контрольная работа по теме

«ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ, НОМЕНКЛАТУРА И СВОЙСТВА ВЕЩЕСТВ»

Для направления подготовки: 44.03.05 – БИОЛОГИЯ И ХИМИЯ

Вариант 0

1.Основные понятия химии

Заполните графы в таблице для газообразного оксида серы (IV), жидкой воды и

кристаллического хлорида натрия, взятых при нормальных условиях.

inproduction of the price of th								
Формула	M,	m,	$V_{m,o}$,	V _o ,	n,	N _φ ,	N _c ,	ρ,
вещества	г /моль	Γ	л / моль;	л;	МОЛЬ	форм.ед.	струк.ед.	г/л;
			см ³ / моль	cm ³				Γ / cm^3
?							$3,01\cdot10^{23}$	2,927
газ							молекул	г/л;
?				36				0,9998
жидк.				cm ³				Γ / cm^3
?					2 моль			2,165
тв.в.								Γ / cm^3

2. Номенклатура неорганических соединений.

а) Укажите класс соединений и составьте эмпирические формулы соединений, соответствующие их названиям:

сульфид кадмия

оксид титана (IV)

гидросульфид калия

нитрат гидроксоолова (II)

фосфористая кислота

б) Назовите соединения и укажите класс:

3. Свойства неорганических соединений.

а) Какие из указанных оксидов являются основными, кислотными и амфотерными (приведите формулы соответствующих им гидроксидов (кислот и оснований):

GeO₂ Cr₂O₃ SiO₂ Na₂O CaO

Заполните таблицу.

Типы оксидов	Формулы оксидов	Формулы соответствующих гидроксидов
Кислотные		
Основные		
Амфотерные		

б) Какие из указанных кислот образуют кислые соли? Составьте формулы этих солей:

в) Какие из указанных оснований образуют основные соли? Составьте формулы этих солей:

4. Составьте молекулярные и ионно-молекулярные уравнения реакций для осуществления следующих превращений:

$$Zn \rightarrow ZnO \rightarrow ZnSO_4 \rightarrow Zn(NO_3)_2 \rightarrow O_2$$

5. Песок массой 2 кг сплавили с избытком гидроксида калия, получили в результате силикат калия массой 3,86 кг. Определите выход продукта реакции, если массовая доля оксида кремния (IV) в песке равна 90%.

Кафедра фундаментальной и прикладной химии

Контрольная работа по теме

«РАСТВОРЫ, ОБМЕННЫЕ РЕАКЦИИ В РАСТВОРАХ, ОБЩИЕ СВОЙСТВА РАСТВОРОВ» Для направления подготовки: 44.03.05 – БИОЛОГИЯ И ХИМИЯ

Вариант 0

1	Скопько і	граммов КОН	солержится	гв 1 4н	nactron	е объемом	650 n	мπ
1.	CKOMBKO I	раммов кон	содержител	1 р 1,тп	раствор	C OOBCMOM	. U <i>J</i> U 1	VIJI

- **2**. Для раствора какого вещества справедливо соотношение $2C_{M}=C_{H}$
 - a) $Fe_2(SO_4)_3$
- δ) H₂S
- в) HBr
- г) ZnSO₄
- д) Pb(NO₃)₂

3. Рассчитайте, какой объем концентрированного раствора нитрата калия ($\omega = 22\%$, р = 1,147г/мл) потребуется для приготовления 400мл разбавленного раствора с молярной концентрацией 0,15моль/л.

- 4. Расположите вещества в порядке убывания силы электролитов:
 - a) H_2SeO_3

 $K_{\text{лисс}} = 3.5 \cdot 10^{-3}$

 σ) $H_2S_2O_3$

 $K_{\text{дисс}} = 2.2 \cdot 10^{-1}$ $K_{\text{дисc}} = 2.3 \cdot 10^{-8}$

B) H₂CO₃

 $K_{\text{TMCC}} = 4.5 \cdot 10^{-7}$

г) H₂TeO₄

5 Каким молекулярным уравнением соответствует сокращенное ионно-молекулярное уравнение

$H^+ + CH_3COO^- = CH_3COOH$

- a) $HNO_2 + NaCH_3COO = CH_3COOH + NaNO_2$:
- 6) $H_2SO_4 + Ca(CH_3COO)_2 = CaSO_4 + 2CH_3COOH$:
- B) $HNO_3 + KCH_3COO = CH_3COOH + KNO_3$;
- Γ) 2HCl + Ba(CH₃COO)₂ = 2CH₃COOH + BaCl₂.
- **6**. Воздействие какого из факторов будет подавлять гидролиз KNO₂ в водном растворе:
 - а) разбавление раствора;
- б) охлаждение раствора;
- в) подкисление раствора;
- г) добавление кристаллического KNO₂.

Для подтверждения ответа напишите уравнение гидролиза в ионно-молекулярном и молекулярном виде, укажите кислотность среды.

- 7. Для раствора HNO₃ с концентрацией 0,01н. рассчитать величину рН раствора.
- 8. Расположите вещества в порядке уменьшения рН их водных растворов с концентрацией 0,1 моль/л.
 - a) H_2SO_4
- \mathfrak{G}) H_2CO_3
- B) $Ba(OH)_2$
- г) LiCl
- **9**. Определите растворимость соли $Pb_3(PO_4)_2$. ПР $(Pb_3(PO_4)_2) = 7.9 \cdot 10^{-43}$.
- 10. В каком случае осадок начнет выпадать раньше, если к растворам, содержащим ионы Г в одинаковой концентрации, по каплям добавлять растворы следующих веществ одинаковой концентрации:

a) $Ca(NO_3)_2$

 $\Pi P(CaF_2) = 4.0 \cdot 10^{-11}$:

B) $PB(NO_3)_2$

 $\Pi P(PbF_2) = 3.2 \cdot 10^{-8};$

б) MgCl₂

 $\Pi P(MgF_2) = 7.0 \cdot 10^{-9}$;

г) BaCl₂

 $\Pi P(BaF_2) = 1.7 \cdot 10^{-6}$?

11. Равновесие реакции

$$[Cd(NH_3)_4JSO_4 + 4KCN \xrightarrow{\rightarrow} K_2[Cd(CN)_4] + K_2SO_4 + 4NH_3\uparrow$$

смещено вправо. Какая из констант нестойкости больше:

a) K нест. $[Cd(NH_3)_4]^{2+}$

me<u>:</u>
б) К нест [Cd(CN)₄]²⁻ ?

12. Раствор камфоры массой 0,522 г, содержащейся в 17 г эфира, кипит при температуре на 0,461°C выше, чем чистый эфир. Эбулиоскопическая константа эфира 2,16 К·кг/моль. Определите молекулярную массу камфоры.

Кафедра фундаментальной и прикладной химии

Контрольная работа по теме

«ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ»

Для направления подготовки: 44.03.05 – БИОЛОГИЯ И ХИМИЯ

Вариант 0

1. Установите соответствие между уравнением реакции и математическим выражением первого следствия из закона Гесса для нее.

Схема реакиии

Формула для расчета $\Delta_r H^o_{298}$

A)
$$3\text{Fe} + 4\text{H}_2\text{O}_{(\Gamma.)} = \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

1)
$$\Delta_r H^{\circ}_{298} = 2\Delta_f H^{\circ}_{298} (Fe_3O_4) + \Delta_f H^{\circ}_{298} (H_2O) - 3\Delta_f H^{\circ}_{298} (Fe_2O_3)$$

b)
$$3\text{Fe}_2\text{O}_3 + \text{H}_2 = 2\text{Fe}_3\text{O}_4 + \text{H}_2\text{O}_{(\Gamma.)}$$

2)
$$\Delta_r H^o_{298} = \Delta_f H^o_{298} (Fe_3 O_4) - 4 \Delta_f H^o_{298} (H_2 O)$$

B)
$$Fe_3O_4 + 4H_2 = 3Fe + 4H_2O_{(r.)}$$

3)
$$\Delta_r H^{\circ}_{298} = 3\Delta_r H^{\circ}_{298} (H_2 O) - \Delta_r H^{\circ}_{298} (Fe_2 O_3)$$

$$\Gamma$$
) Fe₂O₃ + 3H₂ = 2Fe + 3H₂O_(Γ)

4)
$$\Delta_t H^{\circ}_{298} = 3\Delta_t H^{\circ}_{298} (Fe_2 O_3) - 2\Delta_t H^{\circ}_{298} (Fe_3 O_4) - \Delta_t H^{\circ}_{298} (H_2 O)$$

5)
$$\Lambda H^{0}_{200} = 4$$

5)
$$\Delta_r H^o_{298} = 4\Delta_f H^o_{298}(H_2O) - \Delta_f H^o_{298}(Fe_3O_4)$$

2. В каком фазовом переходе энтропия конечного состояния системы больше энтропии исходного состояния:

a)
$$H_2O_{(r)} = H_2O_{(K)}$$
;

$$δ) O_{2(x)} = O_{2(r)};$$

B)
$$I_{2(K)} = I_{2(\Gamma)}$$
;

$$\Gamma$$
) $CO_{2(k)} = CO_{2(\Gamma)}$.

3. Какие оксиды не могут быть восстановлены водородом до свободного металла (условия стандартные)?

a)
$$ZnO + H_2 = Zn + H_2O$$

$$\Delta_r G^o = +83 \text{ кДж};$$

6)
$$NiO + H_2 = Ni + H_2O$$

$$\Delta_r G^{o} = -26 \text{ кДж};$$

в)
$$BaO + H_2 = Ba + H_2O$$

$$\Delta_r G^{o} = +281 \text{ кДж};$$

$$\Gamma$$
) $Ag_2O + H_2 = 2Ag + H_2O$

$$\Delta_r$$
G° = -226 кДж.

4. Рассчитайте при 298 К изменение энергии Гиббса для реакции:

$$NO_{(\Gamma)} + 0.5O_{2(\Gamma)} = NO_{2(\Gamma)}$$

если
$$\Delta H_{298}^{\circ} =$$
 -57,3 кДж и $\Delta S_{298}^{\circ} =$ -72,9 Дж/К

5. Установите соответствие между термохимическим уравнением прямой реакции и ее характеристикой

Термохимическое уравнение прямой реакции

A)
$$NH_4NO_{3 \text{ (TB.)}} = N_2O_{\text{ (r.)}} + 2H_2O_{\text{ (r.)}}, \Delta_rH^{\circ}_{298} < 0$$

b)
$$CS_{2(\Gamma)} + 3O_{2(\Gamma)} = CO_{2(\Gamma)} + 2SO_{2(\Gamma)}; \Delta_r H^o_{298} < 0$$

B)
$$NH_4Cl_{(TB.)} = NH_{3(\Gamma.)} + HCl_{(\Gamma.)}; \Delta_r H^o_{298} > 0$$

$$\Gamma$$
) 2KBr_(TB.)+ O_{2(Γ .)} = 2KBrO_(TB.); $\Delta_r H^o_{298} > 0$

Характеристика прямой реакции

- 1) эндотермическая и термодинамически невозможна при любой температуре
- 2) эндотермическая и термодинамически возможна только при сравнительно высокотемпературном режиме
- 3) эндотермическая и термодинамически возможна только при сравнительно низкотемпературном режиме
- 4) экзотермическая и термодинамически возможна при любой температуре
- 5) экзотермическая и термодинамически возможна только при сравнительно низкотемпературном режиме
- 6) экзотермическая и термодинамически возможна только при сравнительно высокотемпературном режиме

6.Окисление оксида серы (IV) протекает по уравнению:

$$2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)}$$

Во сколько раз изменится (увеличится или уменьшится) скорость этой реакции при уменьшении реакционного объема в 4 раза?

- 7. На сколько градусов нужно увеличить температуру, чтобы скорость реакции возросла в 128 раз? Температурный коэффициент скорости реакции равен 2.
- 8. На энергетической диаграмме двух различных механизмов одной и той же химической реакции буквой A обозначена величина...

- 1) энергии активации прямой реакции, идущей в присутствии катализатора;
- **2**) энергии активации прямой реакции, идущей без катализатора;
- 3) энергии активации обратной реакции, идущей без катализатора;
- **4**) изменения энергии прямой реакции при введении катализатора

Ответ поясните

9.Для реакции $CO_{2(\Gamma)} + 4H_{2(\Gamma)} \longleftrightarrow H_{4(\Gamma)} + 2H_2O_{(ж)}$ укажите правильно записанное выражение для константы равновесия:

a)
$$K = \frac{[CO_2] \cdot [H_2]^4}{[CH_4]}$$

6)
$$K = \frac{[CH_4] \cdot [H_2O]^2}{[CO_2] \cdot [H_2]^4}$$

B)
$$K = \frac{[CH_4] \cdot [2H_2O]}{[CO_2] \cdot [4H_2]}$$

$$\Gamma(K) = \frac{[CH_4]}{[CO_2] \cdot [H_2]^4}$$

10.В каких случаях можно однозначно сказать, в каком направлении смещается равновесие в следующих системах при одновременном уменьшении температуры и повышении давления:

1) CO
$$_{(\Gamma)}$$
 + H₂O $_{(\Gamma)}$ \leftrightarrow CO_{2(Γ)} + H_{2(Γ)}

$$\Delta_r H_1^{\circ} = -42,7 \text{ кДж}$$

2)
$$N_2O_{4(\Gamma)} \leftrightarrow 2NO_{2(\Gamma)}$$

$$\Delta_r H_2^{\circ} = 57.4 \text{ кДж}$$

3)
$$2CO_{(r)} + O_{2(r)} \leftrightarrow 2CO_{2(r)}$$

$$\Delta_r H_3^\circ = -569,4 кДж$$

Кафедра фундаментальной и прикладной химии

Контрольная работа по теме «НЕМЕТАЛЛЫ»

Для направления подготовки: **44.03.05** – **БИОЛОГИЯ И ХИМИЯ Вариант 0**

- 1. Сопоставьте в ряду кислородных кислот пниктогенов Э(V) изменения следующих свойств:
 - а) геометрии анионов;
 - б) термической устойчивости;
 - в) кислотного характера водных растворов;
- г) окислительных свойств (проиллюстрируйте двумя примерами уравнений реакций). Объясните наблюдаемые закономерности.
- **2.**Напишите уравнения реакций следующих превращений. Укажите условия их проведения. Для осуществления каждого превращения используйте минимальное число стадий. В случае окислительно-восстановительных процессов в растворах напишите электронно-ионные уравнения полуреакций.

a)
$$KClO_3 \rightarrow KCl \rightarrow Cl_2 \rightarrow ICl_3 \rightarrow K[ICl_4] \cdot 2H_2O$$

6)
$$FeS_2 \rightarrow H_2SO_4 \rightarrow H_2S_2O_8 \rightarrow Na_2S_2O_3 \rightarrow Na_2S_4O_6$$

3.В трех бюксах без этикеток находятся в виде порошков следующие химические соединения: TeO_2 , $KClO_3$, Na_2SO_4 . Используя характерные реакции, определите содержимое бюксов. Напишите уравнения всех предложенных, укажите условия их проведения. Предложите способ получения SO_2Cl_2 , используя в качестве единственного источника серы и хлора содержимое бюксов.

Новгородский государственный университет имени Ярослава Мудрого

Кафедра фундаментальной и прикладной химии

Контрольная работа по теме «s- и p-МЕТАЛЛЫ»

Для направления подготовки: **44.03.05 – БИОЛОГИЯ И ХИМИЯ Вариант 0**

- **1.** В чем проявляется отличие химии лития от химии остальных щелочных металлов? Рассмотрите на примере условий получения и устойчивости оксидов и пероксидов; растворимости карбонатов, гидрокарбонатов и фосфатов; склонности к образованию кристаллогидратов солей.
- 2. Напишите уравнения реакций следующих превращений. Укажите условия их проведения. Для осуществления каждого превращения используйте минимальное число стадий. В случае окислительно-восстановительных процессов в растворах напишите электронно-ионные уравнения полуреакций.

a) Be(NO₃)₂
$$\square$$
^{NaOH(μ36.)} $\rightarrow X_1 \square$ ^{NH₄ Cl(p.)} $\rightarrow X_2 \rightarrow$ Be₄O(CH₃COO)₆ \downarrow BeCl₂(p.)

$$δ$$
) $SnCl_2 → H_2SnCl_6 → SnS_2 → Na_2[Sn(OH)_6] → SnO_2$

3. В три пробирки, содержащие раствор сульфата алюминия, добавляют (по каплям) соответственно эквимолярные растворы гидроксида натрия, гидрата аммиака, а также гидрата аммиака с большим избытком хлорида аммония. В какой пробирке осадок гидроксида алюминия появится в первую очередь? Выпадут ли осадки во всех пробирках?

Характеристика оценочного средства **TECT**

Тест - система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося. Тестовые задания для аудиторной самостоятельной работы представлены одним комплектом тестов по разделу 4 «Химические процессы в растворах» УЭМ 1 «Общая химия» учебного модуля.

Комплекты тестов по разделам модуля

Номер	Темы тестовых заданий	Контролируем
раздела		ые
УЭМ 1		компетенции
		(их части)
Раздел 1	-	-
Раздел 2	-	-
Раздел 3	-	-
Раздел 4	Окислительно-восстановительные реакции (Т)	CKX-1, CKX-3

Комплект тестов содержит 10 вариантов тестовых заданий. Все варианты комплекта тестов представлены в закрытой части ФОС (часть 2). Демонстрационный вариант тестовых заданий приведен ниже.

Параметры оценочного средства – ТЕСТ

Предел длительности контроля	2 акад.часа			
Предлагаемое количество вопросов	20			
Составление тестов	по вариантам			
Критерии оценки:				
«5», если	Студент осуществляет правильное, полное и обоснованное выполнение тестовых заданий, проявляя отличные теоретические знания и практические умения, при этом степень правильности выполнения тестовых заданий достигает 90-100%.			
«4», если	Студент допускает неточности при выполнении тестовых заданий, проявляя хорошие теоретические знания и практические умения, при этом степень правильности выполнения тестовых заданий достигает 70-89%.			
«3», если	Студент допускает существенные погрешности при выполнении тестовых заданий, проявляя удовлетворительные теоретические знания и практические умения, при этом степень правильности выполнения тестовых заданий достигает 50-69%.			

Кафедра фундаментальной и прикладной химии

Тестовое задание по теме «ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ» Для направления подготовки: 44.03.05 – БИОЛОГИЯ И ХИМИЯ

Вариант 0

1.	Степень	окисления ф	фосфора	в $Ba_2P_2O_7$	составляет

1) +6

2) +5

3) +4

4) +3.

2. Атом азота имеет низшую возможную степень окисления в соединениях...

1) NH₃;

2) N₂O₃;

3) $(NH_4)_2Cr_2O_7$;

4) N₂H₄.

3. Схемы превращений, в которых степени окисления химических элементов не изменяются, представлены под номерами...

1) $Cu(NO_3)_2 \longrightarrow CuO + NO_2 + O_2$;

2) $CuSO_4 + KI \rightarrow CuI + I_2 + K_2SO_4$

3) $(CuOH)_2CO_3 \xrightarrow{t} CuO + CO_2 + H_2O;$

4) $Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + KNO_3$

4. Установите соответствие между уравнением окислительно-восстановительной реакции и схемой, описывающей процесс восстановления.

Уравнение окислительно-восстановительной реакции

1) $2KMnO_4 + 5SO_2 + H_2O = K_2SO_4 + 2MnSO_4 + H_2SO_4$

2) $2KMnO_4 + 3MnSO_4 + 2H_2O = K_2SO_4 + 5MnO_2 + 2H_2SO_4$

3) $8KMnO_4 + KI + 8KOH = KIO_4 + 8K_2MnO_4 + 4H_2O$

Схема процесса восстановления

A) $Mn^{+7} + 3\bar{e} \rightarrow Mn^{+4}$

b) $S^{+4} - 2\bar{e} \rightarrow S^{+6}$

 $\mathbf{B}) \operatorname{Mn}^{+7} + \overline{e} \rightarrow \operatorname{Mn}^{+6}$

 Γ) Γ - $8\bar{e} \rightarrow \Gamma^{+7}$

Д) $Mn^{+7} + 5 \bar{e} \rightarrow Mn^{+2}$

E) $Mn^{+2} - 2 \bar{e} \rightarrow Mn^{+4}$

5. В уравнении окислительно-восстановительной реакции

$$NaClO_3 + HCl \rightarrow NaCl + Cl_2 + H_2O$$

коэффициент перед формулой восстановителя равен _____, а коэффициент перед формулой окислителя равен

6. Установите соответствие между формулой окисленной формы элемента и формулой его восстановленной формы.

Окисленная форма

1) CrO_4^2

2) MnO₂

3) H₂O

Восстановленная форма

A) Mn²⁺

b) $Cr_2O_7^{2-}$

 $\mathbf{B}) \, \mathrm{MnO_4}^-$

 Γ) O₂

Д) H₂

 \mathbf{E}) \mathbf{CrO}_2^-

7. В электрохимической цепи при стандартных условиях самопроизвольно протекает окислительно-восстановительная реакция:

$$H_2 + CuCl_2 = 2HCl + Cu \ (p_{H_2} = 16ap, a_{H^+} = 1, a_{Cu^{2+}} = 1).$$

Установите соответствие между схематической записью электрохимических систем, обеспечивающих протекание этой реакции, и их количественными характеристиками.

Электрохимическая система

1) (-) Pt, H₂|HCl ||CuCl₂| Cu (+)

2) $H^+ \mid H_2$, Pt $(p_{H_2} = 16ap, a_{H^+} = 1)$

3) $Cu^{2+}_{(p,)} | Cu_{(TB,)} | (a_{Cu^{2+}} = 1)$

Количественная характеристика процесса

А) Равновесный электродный потенциал $\Delta \varphi$ на границе « металл – раствор»

Б) Равновесный электродный потенциал $\Delta \phi_0$ процесса: $2H^+ + 2\bar{e} \leftrightarrow H_2$

В) Стандартный электродный потенциал φ° (Cu²⁺/Cu),

Г) ЭДС медно-водородной цепи $E^{\circ}_{r_{3}}$ (станд.усл.)

8. Окислительно-восстановительная реакция, ЭДС которой по определению является стандартным электродным потенциалом полуреакции

$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} = 2Cr^{3+} + 7H_2O, \varphi^{\circ} = +1.33 \text{ B},$$

протекает самопроизвольно при стандартных условиях и представлена ионно-молекулярным уравнением под номером ... **1)** $Cr_2O_7^{2-} + 2H^+ = 2Cr^{3+} + H_2O + 3O_2$; **2)** $Cr_2O_7^{2-} + 8H^+ + 3H_2 = 2Cr^{3+} + 7H_2O$; **3)** $2Cr^{3+} + 7H_2O = Cr_2O_7^{2-} + 8H^+ + 3H_2$; **4)** $2Cr^{3+} + H_2O + 3O_2 = Cr_2O_7^{2-} + 2H^+$.

1)
$$Cr_2O_7^{2-} + 2H^+ = 2Cr^{3+} + H_2O + 3O_2$$
; 2) $Cr_2O_7^{2-} + 8H^+ + 3H_2 = 2Cr^{3+} + 7H_2O_3$

3)
$$2Cr^{3+} + 7H_2O = Cr_2O_7^{2-} + 8H^+ + 3H_2$$
; 4) $2Cr^{3+} + H_2O + 3O_2 = Cr_2O_7^{2-} + 2H^+$.

9. В окислительно-восстановительной системе:

$$Br_{2(p,)} + SO_{2(r)} + 2H_2O = 2HBr + H_2SO_4$$

первоначально все вещества находятся в стандартных состояниях при стандартных термодинамических условиях. Известны значения стандартных электродных потенциалов полуреакций: $Br_2 + 2\bar{e} \leftrightarrow 2Br^-$, $\varphi^{\circ}_{1} = +1,065 B$; $SO_4^{2-} + 4H^+ + 2\bar{e} \leftrightarrow SO_2 + 2H_2O$, $\varphi^{\circ}_{2} = +0,17 B$. Расчет показывает, что разность стандартных электродных потенциалов E° процесса равна

В, следовательно, термодинамически возможна реакция. Константа химического равновесия $K_{\text{равн}}$ этой реакции равна _______, следовательно, равновесие смещено в _______ направлении, и в равновесной смеси будут преобладать

10. В окислительно-восстановительной системе:

$$HI_{(p.)} + HNO_{3(P.)} \leftrightarrow HIO_{3(p.)} + NO_{2(\Gamma.)} + H_2O_{(\kappa.)}$$

первоначальные активности всех ионов равны 1, относительное парциальное давление NO2 равно 1, температура равна 298К. Значения стандартных электродных потенциалов полуреакций с участием нитрат- и иодид-ионов равны:

a)
$$NO_3^- + 2H^+ + \bar{e} \leftrightarrow NO_2 + H_2O$$
, $\varphi^{\circ}_1 = +0.80$ B;

6)
$$NO_3^- + H_2O + 2\bar{e} \leftrightarrow NO_2^- + 2OH^-, \varphi^{\circ}_2 = +0.01 B;$$

B)
$$IO_3^- + 6H^+ + 6\bar{e} \leftrightarrow I^- + 6H_2O$$
, $\varphi^{\circ}_3 = +1,085$ B;

Γ)
$$IO_3^- + 3H_2O + 4\bar{e} \leftrightarrow \Gamma^- + 6OH^-$$
, $\varphi^{\circ}_4 = +0.26$ B.

С течением времени концентрации исходных веществ поскольку реакция будет протекать самопроизвольно в направлении. Правильный аргумент прогноза приведен под номером...

1)
$$\varphi^{\circ}_{1} > \varphi^{\circ}_{4}$$
; 2) $\varphi^{\circ}_{4} > \varphi^{\circ}_{2}$; 3) $\varphi^{\circ}_{3} > \varphi^{\circ}_{1}$; 4) $\varphi^{\circ}_{3} > \varphi^{\circ}_{2}$.

11. Значение стандартного потенциала полуреакции с участием оксидов углерода φ° CO₂/CO = =-0.12 В. Превращение CO \rightarrow CO₂ в стандартных условиях возможно под действием...

- 1) $ZrO_2 (\varphi^{\circ} ZrO_2 / Zr = -1.43 B);$
- 2) SiO_2 (φ °SiO₂/Si = -0.86 B);
- 3) SnO (φ °SnO / Sn = -0,10 B);
- **4)** PbO (φ °PbO/Pb = +0,25 B).

12. Значения стандартных потенциалов полуреакций с участием хлорат-ионов равны:

a)
$$ClO_3^- + 6H^+ + 6\bar{e} = Cl^- + 3H_2O$$
 (pH = 0), $\varphi^\circ = 1.45$ B;

6)
$$\text{ClO}_3^- + 3\text{H}_2\text{O} + 6\bar{\text{e}} = \text{Cl}^- + 6\text{OH}^- \text{(pH = 14)}, \ \varphi^\circ = 0.63 \text{ B};$$

Хлорат-ионы являются более сильными окислителями...

- 3) в щелочной среде; 1) в кислой среде; 2) в нейтральной среде;
- 4) этих данных недостаточно для определения среды, в которой хлорат-ионы проявляют в болошей степени окислительные свойства.
- 13. Для полуреакции

$$ClO_3^- + 6H^+ + 5\bar{e} = \frac{1}{2}Cl_2 + 3H_2O$$

зависимость электродного потенциала от активности реагентов при Т = 298 К имеет вид...

1)
$$\varphi = \varphi^{\circ} + \frac{0,059}{5} \lg \frac{a(ClO_3^{-})a^6(H^+)}{a^{\frac{1}{2}}(Cl_2)a^3(H_2O)};$$
 2) $\varphi = \varphi^{\circ} + \frac{0,059}{5} \lg \frac{a(ClO_3^{-})a^6(H^+)}{a^3(H_2O)}$

3)
$$\varphi = \varphi^{\circ} + \frac{0,059}{5} \lg \frac{a(ClO_3^-)a^6(H^+)}{a^{\frac{1}{2}}(Cl_2)};$$
 4) $\varphi = \varphi^{\circ} + \frac{0,059}{5} \lg \frac{a(ClO_3^-)a(H^+)}{a(Cl_2)}$

14. В окислительно-восстановительной системе: $V^{3+} + Cr^{2+} = V^{2+} + Cr^{3+} \; ,$	(T = 298 K)
начальные активности реагентов равны: $a(V^{3+}) = a(Cr^{3+}) = 1$ $a(V^{2+}) = 10^{-4}$ моль / л. Значения стандартных электродных и $\varphi^{\circ}(Cr^{3+}/Cr^{2+}) = -0.41$ В; $\varphi^{\circ}(V^{3+}/V^{2+}) = -0.26$ В. Расчет пок электродных потенциалов E процесса равна	0^{-3} моль / л; $a(Cr^{2+}) = 10^{-2}$ моль / л; потенциалов полуреакций равны: азывает, что разность реальных
15. Цинковый электрод погружен в 0,1 н. раствор ZnS раствора сульфата цинка в 10 раз средний коэффициент ак от 0,40 до 0,64. Расчет показывает, что при этом электродны В.	тивности электролита увеличился
16. Установите соответствие между составом химическ процессами, протекающими на катоде (K) и аноде (A) при е Электроды гальванического элемента 1) стандартный цинковый электрод (φ° (Z_n^{2+}/Z_n) = -0,76 B) 2) стандартный никелевый электрод (φ° (Z_n^{2+}/Z_n) = -0,25 B)	го работе. Электродные процессы
17. Составлена концентрационная гальваническая цепь: Pt, $H_2(1 \text{ бар}) \mid 0,001 \text{ M HCOOH} \mid 1 \text{M CH}_3\text{CO}$ Константы диссоциации кислот равны: $K(\text{HCOOH}) = 1,77 \cdot 10^{-4}$ ЭДС цепи при 298К составило	$OOH \mid H_2(1 \text{ бар}), Pt$; $K(CH_3COOH) = 1,75 \cdot 10^{-5}$. Значение
18 . С целью определения кислотности желудочного сока бы Pt , H_2 (1 бар) желудочный сок HCI ($a=1$ При 25 °C она составила 0,082 В. Расчет показывает, что р	H_{2} (1 бар), Pt.
 19. Установите соответствие между состоянием подвергаем процессами на графитовых электродах. Состояние вещества при электролизе 1) расплав фторида натрия 2) водный раствор фторида натрия 	ого электролизу вещества и Электродные процессы A) K: Na ⁺ + e = Na B) A: Na ⁺ + e = Na B) K: $2H_2O + 2e = H_2 + 2OH^-$ Г) A: $2H_2O + 2e = H_2 + 2OH^-$ Д) K: $2F^ 2e = F_2$ E) A: $2F^ 2e = F_2$
20. Время, необходимое для получения 9,6 г меди путем эл сульфата меди (II) при силе тока 25 A, составляет Выход по току 100%, F = 96500 Кл / моль	

Характеристика оценочного средства ЗАДАНИЕ ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Задание для индивидуальной работы - совокупность качественных и расчетных задач, при выполнении которых студент повторяет и закрепляет теоретический материал, отрабатывает и закрепляет соответствующие умения в ходе практического занятия.

Задание для индивидуальной работы представляет собой комплект из 10 вариантов заданий по одной теме УЭМ 2 «Неорганическая химия s-, p- и некоторых d- элементов» учебного модуля.

Комплект заданий для индивидуальной работы

Номер	Темы индивидуальных домашних заданий	Контролируемые
раздела		компетенции
УЭМ 2		(их части)
Раздел 1	•	-
Раздел 2	-	
Раздел 3	аздел 3 Свойства некоторых d- элементов и их соединений	
	•	

Все варианты комплекта заданий для индивидуальной работы представлены в закрытой части ФОС (часть 2). Демонстрационный вариант заданий для индивидуальной работы приведен ниже.

Параметры оценочного средства — **ЗАДАНИЕ ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ**

Предел длительности	3 акад.часа		
контроля			
Предлагаемое	6		
количество заданий			
Составление заданий	по вариантам		
Критерии оценки:	в соответствии с паспортом компетенции		
«5», если	Студент осуществляет правильное, полное и обоснованное		
	решение задач, проявляя отличные теоретические знания и		
	практические умения, при этом степень правильности решения		
	задач достигает 90-100%.		
«4», если	Студент допускает неточности при решении задач, проявляя		
	хорошие теоретические знания и практические умения, при этом		
	степень правильности решения задач достигает 70-89%.		
«3», если	Студент допускает существенные погрешности при решении		
	задач, проявляя удовлетворительные знания и практические		
	умения, при этом степень правильности решения задач достигает		
	50-69%.		

Кафедра фундаментальной и прикладной химии

Задание для индивидуальной работы по теме

«СВОЙСТВА НЕКОТОРЫХ d- ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ»

Для направления подготовки: **44.03.05 – БИОЛОГИЯ И ХИМИЯ** Вариант **0**

- **1**.Сопоставьте в ряду $MnO-MnO_2-Mn_2O_7$ изменения следующих свойств:
 - а) термической устойчивости;
 - б) кислотно-основных свойств;
- в) окислительно-восстановительных свойств (проиллюстрируйте примерами уравнений реакций).

Объясните наблюдаемые закономерности

- **2**. Сопоставьте в ряду AgOH KOH– TlOH (ионные радиусы Ag, K и Tl близки) изменения следующих свойств:
 - а) термической устойчивости;
 - б) основных свойств;
 - в) окислительно-восстановительных свойств
 - г) склонности к комплексообразованию

Объясните наблюдаемые закономерности и проиллюстрируйте примерами.

3.Напишите уравнения реакций следующих превращений. Укажите условия их проведения. Для осуществления каждого превращения используйте минимальное число стадий. В случае окислительно-восстановительных процессов в растворах напишите электронно-ионные уравнения полуреакций.

a)
$$MnSO_4 \rightarrow MnO_2 \rightarrow Mn \rightarrow Mn_2(CO)_{10} \rightarrow Mn(NO_3)_2$$

б)
$$Fe \rightarrow FeCl_2 \rightarrow [Fe(NO)(H_2O)_5]SO_4 - {}^{t^{\circ}} \rightarrow X \rightarrow K_2FeO_4$$

в)
$$Co \rightarrow CoCl_{2(6e3BOДH.)} \rightarrow Co_3O_4 - ^{HCl_{(KOHU,)}} \rightarrow X \rightarrow K_3[Co(NO_2)_6]$$

$$\Gamma) \; Ni \to Ni(CO)_4 \to NiO \to Ni(OH)_3 - ^{H_2 \; SO_4} \to X$$

д)
$$CuSO_4 - ^{Na_2\ CO_3\ (p.,u36.)} \longrightarrow X \longrightarrow CuO \longrightarrow Cu \longrightarrow Cu(NO_3)_{2(безводн.)}$$

e)
$$Ag \rightarrow AgNO_3 \rightarrow Ag_2O \rightarrow [Ag(NH_3)_2]OH \rightarrow AgCl$$

ж)
$$Au \rightarrow H[AuCl_4] \rightarrow K[Au(OH)_4] \rightarrow K[Au(CN)_2] \rightarrow Au$$

3)
$$Zn(NO_3)_2 \rightarrow ZnO \rightarrow Zn_4O(CH_3COO)_6 \rightarrow ZnS \rightarrow Zn$$

- **4**. Цинк применяется для защиты их от коррозии железных и стальных изделий. Почему более активный *цинк* защищает менее активный металл *железо* от окисления? Объясните механизм защитного действия цинка. Цинковые покрытия наносят горячим цинкованием, паровым цинкованием, либо гальваническим способом; по названию способов опишите их сущность.
- **5**. Сплав инвар содержит никель и железо. При взаимодействии 10 г этого сплава с избытком соляной кислоты выделяется 3,94 л водорода (н.у.) Определите массовые доли никеля и железа в сплаве.
- **6**. С какой целью проводят гальваническое золочение изделий? Почему при этом применяется раствор комплексного соединения $K[Au(CN)_2]$? В этом процессе золото выделяется на катоде или на аноде? На поверхность изделия площадью 50 см 2 было нанесено золото методом гальванопластики. Сколько времени проводился электролиз раствора $K[Au(CN)_2]$ при силе тока 10 A, если толщина покрытия составила 0,1 мкм?

Характеристика оценочного средства

ЭКЗАМЕН

Экзамен проводится по окончании изучения учебного модуля в форме собеседования по вопросам экзаменационного билета и учебного модуля в целом. Комплект экзаменационных билетов включает 30 билетов, каждый из которых состоит из двух теоретических вопросов и одного задания - расчетной задачи.

Комплект экзаменационных билетов представлен в закрытой части ФОС (часть 2). Комплект экзаменационных вопросов и демонстрационный вариант экзаменационного билета приведены ниже.

Параметры оценочного средства – ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

Предел длительности контроля	60 мин (на подготовку)		
Предлагаемое количество вопросов	2		
Предлагаемое количество заданий	1		
Критерии оценки:			
«5», если	Студент демонстрирует отличные знания,		
	самостоятельно отвечает на вопросы, приводит свои		
	примеры, проявляя понимание, правильно решает		
	расчетную задачу		
«4», если	Студент допускает неточности при демонстрации		
	знаний, отвечает на вопросы, приводит стандартные		
	примеры, с небольшими погрешностями решает		
	расчетную задачу		
«3», если	Студент испытывает трудности при демонстрации		
	знаний, отвечает с наводящими вопросами, приводит		
	стандартные примеры, со значительными		
	погрешностями решает расчетную задачу.		

Комплект экзаменационных вопросов

- 1. Основные химические понятия: атомная и молекулярная масса, моль, молярная масса, эквивалент, эквивалентная масса, степень окисления элемента, валентность, фаза
- 2. Газовые законы. Условия их выполнения и приложение в химии.
- 3. Стехиометрические законы химии. Дальтониды и бертоллиды.
- 4. Классификация неорганических соединений Общие свойства оксидов.
- 5. Общие свойства оснований Общие свойства кислот
- 6. Общие свойства солей
- 7. Волновые и корпускулярные свойства электрона. Постулат де Бройля, принцип неопределенности Гейзенберга.
- 8. Квантовая модель строения атома водорода. Квантовые числа электрона в атоме. Атомные орбитали, их форма и расположение в пространстве.
- 9. Принципы заполнения электронами орбиталей многоэлектронных атомов.

- 10. Емкость и порядок заполнения электронных подуровней в атоме (на примере элементов 4, 5 периодов).
- 11. Современная формулировка периодического закона Д.И.Менделеева.
- 12. Структура периодической таблицы. Периоды, группы элементов: s,p,d,f-элементы.
- 13. Химическая связь. Характеристики химической связи: энергия, полярность связи, межъядерное расстояние, направленность химической связи. Типы химических связей по распределению электронной плотности.
- 14. Квантово-механические теории химической связи. ММО и МВС, их главные особенности, отличия (на примере молекулы Н2 и О2).
- 15. Свойства химической связи с позиции метода ВС. Насыщаемость химической связи. Валентность элементов. Гибридизация.
- 16. Линейные трехатомные молекулы с позиции метода ВС. Молекула ВеН2
- 17. Рассмотрение молекул с кратными связями с позиции метода ВС.
- 18. Метод молекулярных орбиталей. Основные положения метода МО. (на примере двухатомных гомоядерных молекул и ионов элементов 1-2 периодов таблицы Д.И.Менделеева).
- 19. Донорно-акцепторный механизм образования ковалентной связи.
- 20. Ионная связь. Понятие поляризуемости ионов. Поляризующее действие ионов. Свойства соединений с ионной связью.
- 21. Металлическая связь. Свойства соединений с металлической связью
- 22. Водородная связь, ее энергия, возможность образования, значение в химизме процессов в растворах. Понятие о межмолекулярных взаимодействиях.
- 23. .Внутренняя энергия системы функция состояния системы. Теплота и работа. Энтальпия.
- 24. Тепловой эффект химической реакции. Термохимия. Закон Гесса. Приложения закона Гесса.
- 25. Энтропия. Определение, размерность. Стандартная энтропия вещества. Приближенная оценка изменения энтропии в химических реакциях.
- 26. Изобарно-изотермический потенциал. Энтропийный и энтальпийный факторы процессов. Методы оценки возможности протекания химических процессов: по изменению энтальпии и энтропии, по изобарным потенциалам образования веществ.
- 27. Скорость химической реакции. Влияние концентрации реагирующих веществ на скорость химической реакции. Влияние температуры на скорость химической реакции. Правило Вант-Гоффа, уравнение Аррениуса
- 28. Порядок и молекулярность реакции. Физический смысл константы скорости. Связь констант скоростей и константы равновесия химической реакции. Закон действующих масс.
- 29. Характеристика химического равновесия. Константа химического равновесия. Расчет константы равновесия по изменению стандартного изобарного потенциала.

- 30. Сдвиг химического равновесия. Влияние различных факторов на химическое равновесие. Принцип Ле-Шателье.
- 31. Дисперсные системы и их классификация. Механизм и термодинамика процесса растворения. Теплота растворения. Особенности растворения в жидкости газов, твердых и жидких веществ.
- 32. Истинные растворы. Способы выражения концентрации растворов.
- 33. Процессы и явления, протекающие при образовании растворов.
- 34. Идеальные, предельно-разбавленные и реальные растворы.
- 35. Растворимость. Влияние различных факторов на растворимость веществ.
- 36. Свойства растворов неэлектролитов: осмос, понижение упругости пара над раствором. Способы определения молекулярной массы неэлектролитов.
- 37. Изменение температуры кипения и температуры замерзания неэлектролитов (Второй закон Рауля)
- 38. Растворы электролитов. Изотонический коэффициент. Теория электролитической диссоциации. Основные положения этой теории.
- 39. Растворимость твердых веществ. Произведение растворимости малорастворимых электролитов. Определение растворимости по ПР.
- 40. Влияние одноименных ионов на растворимость электролита.
- 41. Закон действующих масс. Константа диссоциации слабых электролитов.
- 42. Закон разбавления Оствальда.
- 43. Особенности растворов сильных электролитов. Кажущаяся степень диссоциации сильного электролита. Активность, коэффициент активности.
- 44. Вода слабый электролит. Константа диссоциации воды. Ионное произведение воды. рН растворов. Индикаторы.
- 45. Гидролиз солей. Классификация солей по отношению к гидролизу.
- 46. Гидролиз солей различного типа (с примерами).
- 47. Константа гидролиза и степень гидролиза. Влияние различных факторов на гидролиз солей. Особые случаи гидролиза.
- 48. Протонная теория кислот и оснований Брёнстеда. Определение кислот и оснований. Сопряженные пары кислот и оснований, протолитическое равновесие.
- 49. Электронная теория кислот и оснований Льюиса. Определение кислот и оснований. Примеры кислотно-основного взаимодействия.
- 50. Определение и задачи электрохимии. Понятие и механизм образования двойного электрического слоя на границах: "металл вода", "металл раствор его соли".
- 51. Стандартные электродные потенциалы и схемы их измерения.
- 52. Уравнение Нернста для вычисления электродных потенциалов. Схема водородного электрода и химического равновесия на его поверхности.
- 53. Ряд стандартных электродных потенциалов и его предсказательные возможности. Гальванический элемент Якоби-Даниэля.

- 54. Электролиз. Законы Фарадея. Электролиз растворов и расплавов солей. Окислительно-восстановительные реакции, их классификация. Влияние среды на течение окислительно-восстановительных реакций.
- 55. Комплексные соединения. Номенклатура. Изомерия.
- 56. Комплексные соединения в растворах, термодинамическая и кинетическая устойчивость.
- 57. Теории связи комплексных соединений электростатическая, МВС, теория кристаллического поля.
- 58. Изменение свойств элементов (радиус атома, изменение энергии ионизации, сродства к электрону, электроотрицательности) по периодам и группам таблицы Д.И.Менделеева.
- 59. Простые вещества металлы, неметаллы, их положение в таблице Менделеева. Общие физические и химические свойства металлов и неметаллов (взаимодействие их с кислотами и щелочами).
- 60. Гидроксиды как характеристические соединения. Амфотерность соединений. Изменение характера гидроксидов в зависимости от положения элемента в периодической системе.

Новгородский государственный университет имени Ярослава Мудрого Кафедра фундаментальной и прикладной химии Экзаменационный билет № 0

Учебный модуль: **Неорганическая химия** Для направления подготовки **44.03.05.** - Педагогическое образование (с двумя профилями подготовки - Биология и Химия)

- 1. Метод молекулярных орбиталей. Основные положения метода МО. (на примере двухатомных гомоядерных молекул и ионов элементов 1-2 периодов таблицы Д.И.Менделеева).
- 2. Энтропия. Определение, размерность. Стандартная энтропия вещества. Приближенная оценка изменения энтропии в химических реакциях.
- 3. В 1 л раствора содержится 0,0061г Sr(OH)2. Вычислите рН раствора

УТВЕРЖДАЮ			
Зав. кафедрой ФПХ		_ И.В.Зыкова	
Протокол заседания кафедры №	ОТ		2017 г