

НЕИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ

- Лекция Доцента
- Николаевой Надежды Ивановны

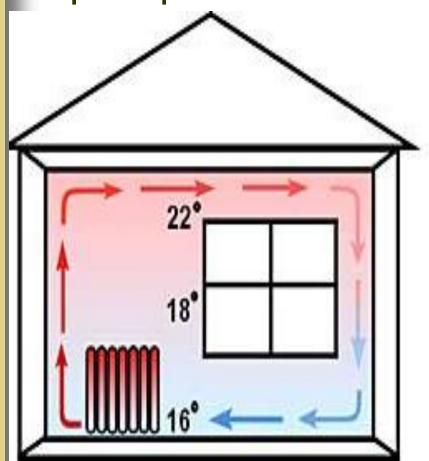
Первооткрыватель инфракрасного излучения

- Ульям Гершель (1738-1822 гг.)
- Английский физик, который первым в 1800 г. Первым открыл инфракрасное излучение невидимую глазу часть спектра.

ИНФРАКРАСНЫЕ ИЗЛУЧЕНИЯ

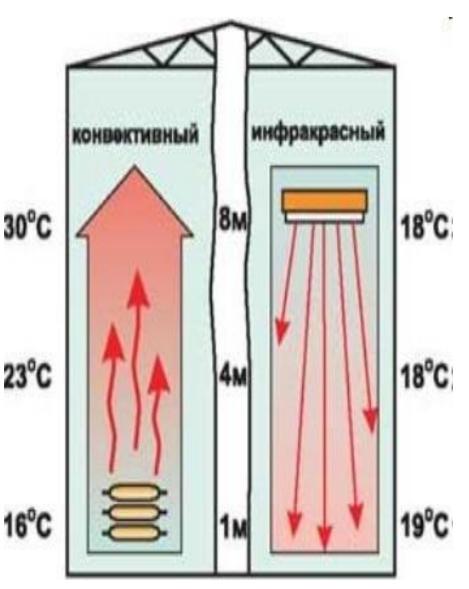
- коротковолновая область: λ=0,74 2,5 мкм;
- средневолновая область: λ=2,5 50 мкм;
- длинноволновая область: λ=50 2000 мкм;
- Короткие волны от источников с температурой выше 100° С
- Длинные волны от источников с температурой ниже 100° С

Электромагнитный спектр



ИНФРАКРАСНЫЕ ИЗЛУЧЕНИЯ

Отопление инфракрасным излучением

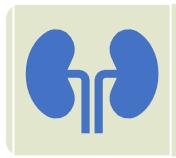

Тепловая энергия от инфракрасных обогревателей не поглощается воздухом, теплый воздух практически не скапливается под потолком, что делает эти приборы незаменимыми при решении задач экономичного обогрева помещений с высокими потолками. Применение инфракрасного обогрева обеспечивает до 40% энергосбережения.

Инфракрасный обогрев позволяет осуществлять локальный обогрев или зоны в помещении.

- Инфракрасные обогреватели обеспечивают ускоренный прогрев помещения.
- Передача тепла от инфракрасных обогревателей предметам происходит мгновенно, поэтому нет необходимости в постоянном или предварительном нагреве помещений

Инфракрасными излучателями можно отапливать:

- животноводческие фермы
- складские и производственные
- помещения
- дома и квартиры
- теплицы
- мастерские, слесарные и т.п.
- черкви, костёлы
- стадионы, гимнастические залы и другие, открытые и закрытые спортивные объекты
- оптовые склады и магазины
- торговые и выставочные павильоны
- кинотеатры, театры
- крытые либо открытые объекты и площади
- перроны, вокзалы, остановки, таможенные терминалы
- площадки, пассажи, террасы, зимние сады

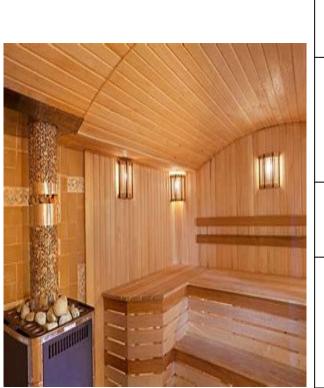

Биологическое действие инфракрасного излучения

Общее и локальное.

При длинноволновом излучении повышается температура поверхности тела,

При коротковолновом - изменяется температура лёгких, головного мозга, почек и некоторых других органов человека.

Воздействие на организм


- При остром повреждении ИК:
- Ожоги кожи, конъюнктивы, роговицы, помутнение роговицы пигментация кожи
- Тепловой и солнечный удар
- При хроническом облучении ИК:
- Катаракта
- Нарушение обменных процессов
 - в миокарде, водно электролитного баланса в организме.

Хронический ларингит, ринит, синусит.

Мутагенный эффект

Данные о восприятии инфракрасного излучения кожей человека

Сила облучения в
ккал/мин* см²

Ощущение боли

Ощущения

0,0015

Горячо, жжёт, напряжение лица

0,00005

0,0002

Ощущение тепла

0,000015

После некоторого действия лёгкое ощущение тепла

Заболевания от воздействий инфракрасных излучений

- ▶При облучении 1600 Вт/кв.м риск:
- Ишемической болезни сердца, гипертонической болезни, болезней артерий, артериол и капилляров.
- Термальное поражение сетчатки глаза и травма хрусталика,
 - катаракта.
- Тормозные процессы в ЦНС.

Защита от инфракрасных излучений

- 1) Архитектурнопланировочные мероприятия,
- 2) Инженернотехнические мероприятия;
- 3) Лечебнопрофилактические мероприятия.

Ультрафиолетовое излучение

- УФА длина волны
 400...280 нм,
- УФВ длина волны 315...280 нм,
- УФС длина волны
 280...200 нм.

Источники УФИ

- Естественным источником ультрафиолетового излучения (УФИ) является Солнце.
- Искусственными источниками УФИ являются газоразрядные источники света По типу источника излучения
- с ртутными лампами низкого давления,
- - с ртутными лампами высокого давления,
- с ксеноновыми лампами,
- с натриевыми лампами высокого давления,
- - с металлогалогенными лампами., электрические дуги (дуговые электропечи, сварочные работы), лазеры и др.

Биологическое действие ультрафиолетового излучения

- > Слабое биологическое воздействие (0,39-0,315 мкм).
- Противорахитичным действием (0,315-0,28 мкм),
- > Убиваютт микроорганизмы (0,28-0,2 мкм).
- Кожные заболевания (дерматиты).
- На центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др.
- ➤ На сетчатку глаз (менее 0,32 мкм), вызывая болезненные воспалительные процессы боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие светобоязни ("снежная" болезнь).

Недостаток УФ - лучей

- Опасен для человека
- "ультрафиолетовая недостаточность" - авитаминоз, при котором нарушается фосфорно-кальциевый обмен и процесс костеобразования,
- снижение работоспособности и защитных свойств организма от заболеваний.
- ("световое голодание").

Заболевания от воздействий ультрафиолетовых излучений

- УФВ:
- Базальноклеточный и чешуйчато клеточный рак кожи,
- Старение кожи, атрофия эпидермиса, узелково-папулезная сыпь.

- УФС:
- катаракта, офтальмия
- Рак кожи

Защита от ультрафиолетового излучения

- 1) Архитектурнопланировочные
- мероприятия,
- 2) Инженернотехнические мероприятия;
- 3) Лечебнопрофилактическ ие мероприятия.

Защита от ультрафиолетового излучения

- Противосолнечные экраны,
- химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ,
- различные преграды, отражающие поглощающие или рассеивающие лучи.
- Специальная одежда (из натуральных тканей— поплина).
- Для защиты глаз светофильтры (очки, шлемы) из тёмно-зелёного стекла, флинтглаз (стекло, содержащее окись свинца) толщиной 2 мм.
- Хорошо отражают УФ-излучения полированный алюминий и меловая побелка, в то время как оксиды цинка и титана, краски на масляной основе плохо.

• ЛАЗЕР (LASER, аббревиатура слов англ, фразы Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), устройство, преобразующее разл. виды энергии (электрич., световую, хим., тепловую и др.) в энергию когерентного электромагнитного излучения.

лазеры подразделяются:
а) лазеры непрерывного действия;
б) импульсные;
в) импульсные с модуляцией добротности.

По характеру работы режима

- Свойства:
- фиксированная длина волны (монохроматичность),
- одинаковая фаза излучения фотонов (когерентность),
- малая расходимость пучка (высокая направленность)
- фиксированная ориентация векторов электромагнитного поля в пространстве (поляризация).

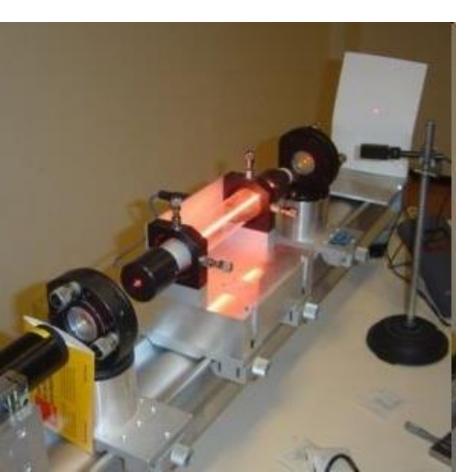
Применение лазеров

- 1. Технологические лазеры для резки, сварки и пайки деталей из различных материалов.
- 1, X
- 2. Лазерная связь осуществляется по оптическому волокну.

Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.

Лазеры в медицине.

- В хирургии и в терапии. Лазерным лучом, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию
- Эффект Противовоспалительный,
- > Репаративный (восстанавливающий),
- > Гипоальгезивный
- > Иммуностимулирующий,
- Бактерицидный.

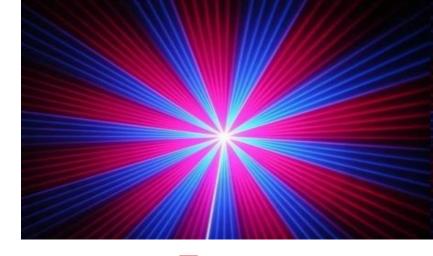

Стоматологический лазер – работает точно и нежно

• Отсутствие вибрации, шума, скорость проведения лечения, безболезненность процедур

Лазеры в научных исследованиях.

- Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей
 - В генной инженерии и нанотехнологии лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10–9 м).

Лазерные локаторы (лидары) применяются для исследования атмосферы.

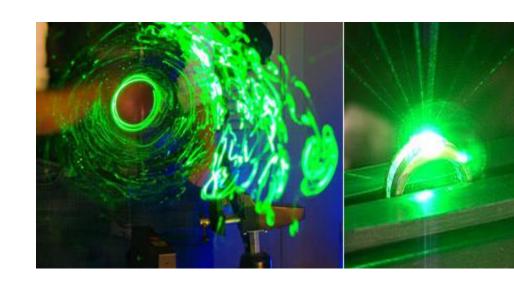

- 5. Военные лазеры.
- Для обнаружения целей и связи,
- Применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.

Опасные и вредные факторы при эксплуатации лазеров:

- - лазерное излучение (прямое, рассеянное, зеркальное или диффузионное отражённое);
- - повышенное значение напряжения в цепях управления;
- - запыленности и загазованности воздуха продуктами взаимодействия лазерного излучения;
- - ультрафиолетовая радиация;
- шум до 70 120 дБА;
- - вибрация;
- - ИИ в рабочей зоне;
- - ЭМИ ВЧ и СВЧ диапазона;
- повышенная температура поверхностей оборудования.

Указки китайской компании Wicked Lasers — детям не игрушка. Их выходные мощности (в луче) в десятки, в сотни раз выше, чем у распространённых недорогих указок.

▶В США (для рынка которых Wicked, главным образом, и старается) её карманные лазеры продаются свободно и легально, даром, что относятся к довольно опасному классу III В.


Лазер – не игрушка

- За секунду-две экспозиции прожечь надутый шарик тёмного цвета, так чтобы он эффектно лопнул;
- ➤ за несколько секунд — перерезать чёрную изоленту,
- > зажечь спичку,
- ➤ поджечь бумагу.
- «Дальность действия» в 193 километра!

Опасности лазерных «игрушек»

Опасности лазерных «игрушек»

- Смотреть на зелёный лазер с выходом в 300 милливатт нельзя.
- Даже маленькие красные лазеры со слабым лучом (как правило, от 0,5 до 1-2, и реже до 5 милливатт, что массово продаются в наших магазинах), опасны при прямом попадании в глаза.
- маленький диаметр луча бесповоротно повреждает отдельные клетки сетчатки.

- Первичный источник света одноваттный (в типовой модели) инфракрасный лазерный диод с непрерывным излучением.
- Генерируемый диодом луч с длиной волны 808 нанометров проходит через линзу и попадает в кристалл из оксидов неодима, иттрия и ванадия, где преобразуется в излучение с длиной волны 1064 нанометра.
- Далее идёт некий кристалл калий-титаново-фосфорный, который преобразует это инфракрасное излучение в видимый лазерный луч с длиной волны 532 нанометра.
- Затем лазер проходит инфракрасный фильтр и выходную линзу и вот, "меч " готов. Почти настоящий, несмертельный, но и небезопасный.

Защита от лазерного излучения

- 1. Архитектурно-Планировочные.
 - 2. Инженерно-технические.
 - 3. Организационные.
 - 4. Лечебно-профилактические меры
- Стандарты лазерной безопасности были впервые приняты в начале 1970-х годов.
- Тип защиты, которая требуется при работе с лазерным излучением, зависит от класса лазера.
- СанПин 5804—91 Санитарные нормы и правила устройства и эксплуатации лазеров. (Акт. 2018 г.).

Инженерно-технические методы

- СКЗ: Оградительные устройства
- (кожухи, экраны и т.д.)
- Дистанционное управление

• Устройство сигнализации

• Маркировка,

• Кодовый замок

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКИЕ МЕТОДЫ

- Контроль за уровнями опасных и вредных факторов
- Контроль за прохождением медицинских осмотров
- Повышение сопротивляемости организма

Ионизирующие излучения

 Изотопы элементов, начиная от полония и кончая трансурановыми. Способные выбивать электороны из атомов с образованием свободных радикалов (Н, ОН, Н₂О₂, С=) с образованием перекисей – окислителей, сильнейших ядов для организма.

K+	Ca +2
Cs 137	Sr 90 (стронций 90)
(цезий 137)	

 α

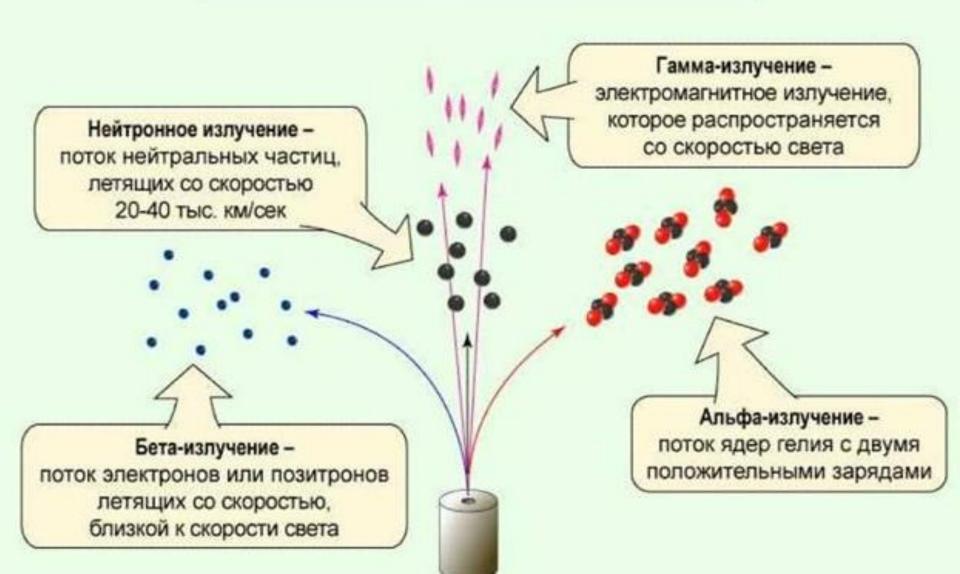
β

n

Виды ионизирующих излучений

1. Жёсткие электромагнитные рентгеновские Р и гамма γ излучения.

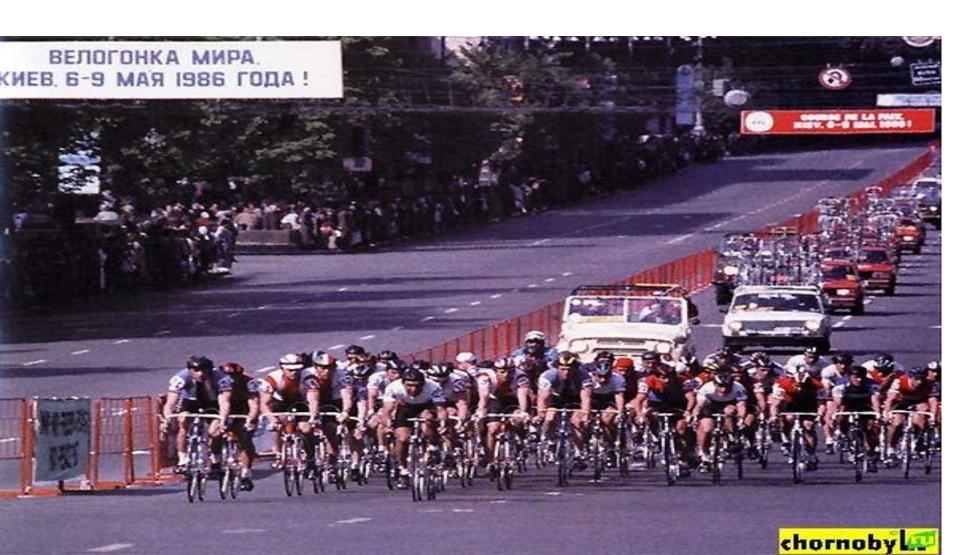
Эти излучения имеют большую проникающую способность.


2. Корпускулярные (неэлектромагнитные) излучения.

Поток ядер гелия, заряд (+), малая проникающая способность, высокая степень ионизации.

Поток электронов, заряд (-), ионизирующая способность бета-излучения ниже, а проникающая способность выше, чем альфа-частиц.

Нейтронное излучение является потоком электронейтральных частиц ядра - нейтронов. Имеет значительную проникающую способность и создаёт высокую степень ионизации


Виды ионизирующих излучений

Применение ионизирующих излучений

Велогонка мира в городе Киев 6-9 мая 1986 года - радиационная обстановка в то время составляла 1000 мкР/час (естественный фон 20 мкР/час).

- По способности концентрировать всосавшиеся продукты деления основные органы можно расположить в следующий ряд:
- щитовидная железа
- > печень
- > скелет
- > мышцы.

Воздействие радиации на различные органы

Значительные дозы радиации могут наносить ущерб клеткам, вызывая разрывы генов в хромосомах, замедляя синтез АДФ [аденозинтрифосфата], необходимого для осуществления энергетических процессов, либо разрушая клеточные мембраны или увеличивая их проницаемость, вследствие чего нарушается внутриклеточное

биохимическое равновесие

Последствия Чернобыля

ДИЕТА ОТ РАДИОЛОГА

- ► Нежелательные последствия рентгеновской нагрузки помогут компенсировать витамины A, C и E, а также натуральные антиоксиданты длительного действия экстракт виноградных косточек.
- ► После посещения рентгеновского кабинета ешьте свинину, морковь, свеклу, грецкие орехи, бананы, красные помидоры, оливки, чеснок, морепродукты, зеленый чай. Лук и петрушку полезно есть непосредственно перед обследованием, а затем через каждые 2 часа.
- ► Сметана и творог даже более эффективны, чем молоко, которое дают "за вредность". А вот сыворотку после рентгена пить не стоит.

Благодарим за внимание! Желаем здоровья и безопасной жизнедеятельности!

