Полезные ссылки

Математика

Целью курса является подготовка учащихся 10-11 классов выполнению заданий 15. 16, 17, 18, 20 единого государственного экзамена по математике (профильный уровень).

В процессе достижения цели предполагается решать следующие задачи:

  • повторение, обобщение и систематизация теоретического материала школьного курса, вызывающего наибольшие затруднения в процессе его применения при решении указанных задач единого государственного экзамена по математике;
  • выделение ключевых задач по рассматриваемым темам;
  • выделение основных методов и приёмов решения задач по рассматриваемым темам;
  • решение задач из вариантов единого государственного экзамена, в том числе различными способами;
  • формирование умения грамотно оформлять найденное решение.

Автор и ведущий курса - доцент кафедры алгебры и геометрии, кандидат педагогических наук Елена Михайловна Кондрушенко.

Занятия проводятся в форме вебинаров 1 раз в неделю. Продолжительность занятия - 2 часа. Обучение начнется в октябре.

Курс рассчитан на 60 часов*.

Курс состоит из двух блоков.

Объём первого блока 30 часов**. К нему могут подключиться учащиеся 10 классов, так как в нём не будет использоваться программный материал по математике 11 класса. Блок будет реализован в первом полугодии.

В первом блоке рассматриваются теоретические аспекты, методы и приёмы решения задач по темам, вызывающим наибольшие затруднения у выпускников в процессе их применения к решению задач единого государственного экзамена. Темы выделены на основе анализа типичных ошибок, допущенных учащимися на едином государственном экзамене по математике в период с 2002 по 2015 годы. Как  показывает практика, типичные ошибки носят один и тот же характер и основаны на формальном усвоении значительной частью учащихся некоторых разделов или тем, относящихся к материалу основных содержательных линий школьного курса математики.  

Объём второго блока 30 часов**. Второй блок будет реализовываться во втором полугодии, поэтому некоторые виды задач, в частности, стереометрические задачи на вычисление углов между прямыми, прямыми и плоскостями, плоскостями в пространстве будут посильны и для учащихся 10 классов. Посильность разбираемых алгебраических задач для учащихся 10 класса определяется последовательностью изложения тем в учебнике, по которому они учатся.

Основное внимание во втором блоке уделено использованию изученной в школе теории, приёмов и методов решения в задачах единого государственного экзамена. Задачи, которые предлагались на едином государственном экзамене, объединены в группы по используемым в их решении методам. Раскрываются направления поиска решения задач. Рассматриваются различные способы решения одной и той задачи.   

В задачном материале обоих блоков рассматриваются сначала ключевые задачи, а потом  более сложные, решение которых складывается из нескольких ключевых, в том числе задачи из вариантов ЕГЭ предыдущих лет. Осуществляется повторение, обобщение и систематизация необходимых теоретических сведений. Соответствующий материал представляется в виде таблиц, опорных сигналов, памяток. Рассматриваются задания на нахождение ошибки в решениях, которые предлагали учащиеся на едином государственном экзамене в предыдущие годы. При этом указывается, какой балл мог быть поставлен за такое решение в соответствии с критериями.

Программа (первый блок)

 

№ темы

 

 

Название темы

 

Количество часов

 

Рассматриваемые вопросы

1

Уравнения и неравенства, содержащие переменную под знаком модуля  

4

Понятие модуля, свойства, раскрытие знака модуля по определению. Различные методы решения уравнений и неравенств, содержащих переменную под знаком модуля (ключевые задачи).

2

Линейные уравнения и неравенства с параметром

4

 

Что понимается под уравнением с параметром (параметрами). Количество решений линейного уравнения с двумя параметрами. Решение уравнений с параметром, сводимых к линейным, в том числе содержащих переменную под знаком модуля. Понятие общей модели решений. Линейные неравенства с параметром. Задачи на решение уравнений и неравенств  с  параметром из вариантов ЕГЭ.

3

Квадратные уравнения и квадратичные  неравенства с параметром (параметрами)

4

Количество решений квадратного уравнения с тремя параметрами. Решение квадратных уравнений с параметром (параметрами), в том числе содержащих переменную под знаком модуля. Квадратичные неравенства с параметром. Задачи на решение уравнений и неравенств с  параметром из вариантов ЕГЭ.

4

Иррациональные уравнения и неравенства

2

Что понимается под иррациональным уравнением (неравенством). Способы решения иррациональных уравнений и неравенств. Иррациональные уравнения и неравенства с параметром. Задачи на решение иррациональных уравнений и неравенств с  параметром из вариантов ЕГЭ.

5

Метод интервалов

4

Этапы решения неравенств методом интервалов. Основные виды неравенств, решаемых методом интервалов. Дробно-рациональные неравенства с параметром, в том числе из вариантов ЕГЭ.

6

Треугольники, четырёхугольники, правильные многоугольники

6

Требования к чертежу в планиметрии. Требования к записи решения планиметрических задач. Ключевые задачи по темам «Треугольники», «Четырёхугольники», «Правильные многоугольники». Основные методы решения планиметрических задач. Задачи из вариантов ЕГЭ.

7

Окружности, взаимное расположение окружностей, вписанные и описанные окружности

6

Окружность. Круг. Взаимное расположение окружности и прямой, двух окружностей. Центральный и вписанный углы. Ключевые задачи по теме «Окружность». Окружность, вписанная в многоугольник, окружность, описанная около многоугольника. Ключевые задачи на вписанные и описанные окружности. Задачи из вариантов ЕГЭ.

 

Программа (второй блок)

 

№ темы

 

 

Название темы

 

Количество часов

 

Рассматриваемые вопросы

1

 

Взаимное расположение прямых и плоскостей в пространстве

4

 

Аксиомы стереометрии. Параллельность и перпендикулярность прямых и плоскостей в пространстве. Требования к чертежу в стереометрии. Угол между прямыми в пространстве. Угол между прямой и плоскостью, угол между плоскостями. Ключевые задачи к первым разделам стереометрии.

2

Многогранники

6

Выпуклые, невыпуклые многогранники. Призмы. Классификация призм. Пирамиды. Классификация пирамид. Ключевые задачи по темам «Призмы», «Пирамиды». Задачи на вычисление элементов призм и пирамид из вариантов ЕГЭ.

3

Векторы и координаты на плоскости и в пространстве

6

Основная теория по темам «Векторы», «Координаты». Ключевые задачи. Векторно-координатный метод решения задач. Задачи из вариантов ЕГЭ, которые можно решить векторно-координатным методом.

4

Показательные и логарифмические уравнения и неравенства.

6

Показательная и логарифмическая функции, их свойства. Ключевые задачи на решение показательных и логарифмических уравнений и неравенств. Задачи на решение показательных и логарифмических уравнений и неравенств, в том числе с  параметром, из вариантов ЕГЭ.

5

Тригонометрические уравнения

6

Понятия синус, косинус, тангенс, котангенс. Тригонометрические формулы. Тригонометрические  функции и их свойства. Понятия арксинус, арккосинус, арктангенс, арккотангенс. Простейшие тригонометрические уравнения. Способы решения тригонометрических уравнений на примере задач из вариантов ЕГЭ. Выборка корней уравнения, принадлежащих данному промежутку.

6

Системы уравнений с параметром (параметрами)

2

Системы уравнений с параметром (параметрами) из вариантов ЕГЭ.

 

Требования к слушателям

Помнить, что результат выполнения экзаменационной работы определяется только тем, какими знаниями и умениями, методами и приёмами решения задач  владеет выпускник, насколько он может мобилизовать свои силы и возможности в нужный момент.

Поэтому слушатели курса должны:

  • активно включаться в работу в процессе проведения вебинара, отмечать непонятные моменты и, когда предоставляется возможность, просить пояснить их;
  • аккуратно вести записи с тем, чтобы дома ещё раз вернуться к рассмотренному материалу и разобраться с ним;
  • выполнять предложенные для самостоятельной работы задания, при этом оформлять решения в соответствии с требованиями, предъявляемыми к решению задач данного вида;
  • повторять теоретический материал, на который опирается решение задач;
  • знать наизусть все формулы, используемые в процессе решения задач на вебинаре и дома;
  • вычисления производить самостоятельно, без помощи калькулятора, вспоминая при этом правила действий над числами, рациональные приёмы вычислений.


*Стоимость полного курса 6 тыс. рублей.
**Стоимость 1 блока 3 тыс. рублей